Journal of Paleolimnology

, Volume 58, Issue 3, pp 373–390 | Cite as

Paleolimnological features of a mega-lake phase in the Makgadikgadi Basin (Kalahari, Botswana) during Marine Isotope Stage 5 inferred from diatoms

  • Mareike Schmidt
  • Markus Fuchs
  • Andrew C. G. Henderson
  • Annette Kossler
  • Melanie J. Leng
  • Anson W. Mackay
  • Elisha Shemang
  • Frank Riedel
Original paper


The Makgadikgadi–Okavango–Zambezi basin (MOZB) is a structural depression in the south-western branch of the East African Rift System of the northern and middle Kalahari, central southern Africa. In the present day, the mainly dry subbasins of the MOZB are part of a long-lived lacustrine system that has likely existed since Early Pleistocene and from which an extant freshwater fish radiation emerged seeding all major river systems of southern Africa. During hydrologically favourable periods the subbasins were connected as a single mega-lake termed Lake Palaeo-Makgadikgadi. Previous geomorphological studies and OSL dates have provided evidence for repeated mega-lake periods since approximately 300 ka. The environmental and climatic implications of such large scale late Quaternary lake-level fluctuations are controversial, with the duration of mega-lake phases poorly constrained. Here, we present the first evidence for a Marine Isotope Stage (MIS) 5 mega-lake period (about 935–940 m a.s.l.) reconstructed from a diatom-rich, 30-cm-thick lacustrine sediment section, exposed close to a palaeo-shoreline of the Makgadikgadi Basin. Based upon the environmental setting and in comparison with sedimentation rates of other similar lake environments, we tentatively estimated that the highstand lasted approximately 1 ka during MIS 5d–b. The 30-cm section was sampled in 0.5-cm steps. Diatom species diversity ranges from 19 to 30 through the section. The dominant species are Pseudostaurosira brevistriata, Rhopalodia gibberula, Cyclotella meneghiniana and Epithemia sorex. The total of 60 sediment samples provide us with a record at decadal to bi-decadal resolution. Based on diatom assemblages and their oxygen isotope composition (δ18O) we infer an alkaline and mostly oligohaline lake with shallow water conditions prevailing in MIS 5, and is potentially analogous to a Heinrich event. The climate over southern Africa during MIS 5 has been considered very arid but the hydromorphological context of our sediment section indicates that we captured a mega-lake period providing evidence that short-term excursions to significantly higher humidity existed. A hydrologically more favourable environment during MIS 5 than formerly presumed is in line with the early human occupation of the Kalahari.


Late Pleistocene Southern Africa Lake Palaeo-Makgadikgadi highstand Diatoms Stable oxygen isotopes Heinrich event 



We appreciate the field assistance of Franziska Slotta (FU Berlin, Germany), Linda Taft (University of Bonn, Germany), Michael Taft (Abenden, Germany), Karl-Uwe Heußner and Alexander Janus (both German Archaelogical Institute, Berlin). Maike Glos (FU Berlin) helped processing samples and Jan Evers (FU Berlin) designed Fig. 1 and helped improving further figures. Many thanks to Manfred Fischer (University of Bayreuth, Germany) for dose rate determination. We also like to thank the reviewers for constructive criticism. The Ministry of Minerals, Energy and Water Resources of Botswana kindly Granted a research permit. FR is grateful to the Deutsche Forschungsgemeinschaft for financial support.

Supplementary material

10933_2017_9984_MOESM1_ESM.pdf (114 kb)
Supplementary material 1 (PDF 114 kb)
10933_2017_9984_MOESM2_ESM.pdf (242 kb)
Supplementary material 2 (PDF 242 kb)
10933_2017_9984_MOESM3_ESM.tif (11.2 mb)
Supplementary material 3 (TIFF 11439 kb)


  1. Balter M (2002) What made humans modern? Science 295(5558):1219–1225CrossRefGoogle Scholar
  2. Batisani N, Yarnal B (2010) Rainfall variability and trends in semi-arid Botswana: implications for climate change adaptation policy. Appl Geogr 30:483–489CrossRefGoogle Scholar
  3. Battarbee RW, Carvalho L, Jones VJ, Flower RJ, Cameron NG, Bennion H, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Kluwer, Dordrecht, pp 155–202CrossRefGoogle Scholar
  4. Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1017CrossRefGoogle Scholar
  5. Bøtter-Jensen L (1997) Luminescence techniques: instrumentation and methods. Radiat Meas 17:749–768CrossRefGoogle Scholar
  6. Broecker WS (2002) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424CrossRefGoogle Scholar
  7. Burrough SL (2016) Late Quaternary environmental change and human occupation of the southern African interior. In: Jones SC, Stewart BA (eds) Africa from MIS 6-2: population dynamics and palaeoenvironments—vertebrate paleobiology and paleoanthropology series. Springer, Heidelberg, pp 161–174CrossRefGoogle Scholar
  8. Burrough SL, Thomas DSG (2009) Geomorphological contributions to palaeolimnology on the African continent. Geomorphology 103:285–298CrossRefGoogle Scholar
  9. Burrough SL, Thomas DSG, Bailey RM (2009a) Mega-lake in the Kalahari: a late Pleistocene record of the Palaeolake Makgadikgadi system. Quat Sci Rev 28:1392–1411CrossRefGoogle Scholar
  10. Burrough SL, Thomas DSG, Singarayer JS (2009b) Late Quaternary hydrological dynamics in the Middle Kalahari: forcing and feedbacks. Earth-Sci Rev 96:313–326CrossRefGoogle Scholar
  11. Caljon AG, Cocquyt CZ (1992) Diatoms from surface sediments of the northern part of Lake Tanganyika. Hydrobiologia 230:135–156CrossRefGoogle Scholar
  12. Carto SL, Weaver AJ, Hetherington R, Lam Y, Wiebe EC (2009) Out of Africa and into an ice age: on the role of global climate change in the late Pleistocene migration of early modern humans out of Africa. J Hum Evol 56:139–151CrossRefGoogle Scholar
  13. Chapligin B, Leng MJ, Webb E, Alexandre A, Dodd JP, Ijiri A, Lücke A, Shemesh A, Abelmann A, Herzschuh U, Longstaffe FJ, Meyer H, Moschen R, Okazaki Y, Rees NH, Sharp ZD, Sloane HJ, Sonzongi C, Swann JEA, Sylvestre F, Tyler JJ, Yam R (2011) Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochim Cosmochim Acta 75:7242–7256CrossRefGoogle Scholar
  14. Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205CrossRefGoogle Scholar
  15. Chase BM, Brewer S (2009) Last glacial maximum dune activity in the Kalahari Desert of southern Africa: observations and simulations. Quat Sci Rev 28:301–307CrossRefGoogle Scholar
  16. Chase BM, Meadows ME (2007) Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Sci Rev 84:103–138CrossRefGoogle Scholar
  17. Chase BM, Scott L, Meadows ME, Gil-Romera G, Boom A, Carr AS, Reimer PJ, Truc L, Valsecchi V, Quick LJ (2012) Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat Sci Rev 56:107–125CrossRefGoogle Scholar
  18. Cholnoky BJ (1968) Die Ökologie der Diatomeen in Binnengewässern (Ecology of diatoms in inland waters). Cramer J, LehreGoogle Scholar
  19. Cohen AS, Stone JR, Beuning KRM, Park LE, Reinthal PN, Dettman D, Scholz CA, Johnson TC, King JW, Talbot MR, Brown ET, Ivory SJ (2007) Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. PNAS 104(42):16422–16427CrossRefGoogle Scholar
  20. Cooke HJ (1979) The origin of the Makgadikgadi Pans. Botsw Notes Rec 11:37–42Google Scholar
  21. Cooke HJ (1980) Landform evolution in the context of climatic change and neo-tectonism in the Middle Kalahari of north-central Botswana. Trans Inst Br Geogr 5:80–99CrossRefGoogle Scholar
  22. Cooke HJ, Verstappen HT (1984) The landforms of the western Makgadikgadi basin in northern Botswana, with consideration of the chronology of the evolution of Lake Palaeo-Makgadikgadi. Z Geomorphol 28:1–19Google Scholar
  23. Cordier S, Harmand D, Lauer T, Voinchet P, Bahain JJ, Frechen M (2012) Geochronological reconstruction of the Pleistocene evolution of the Sarre valley (France and Germany) using OSL and ESR dating techniques. Geomorphology 165–166:91–106CrossRefGoogle Scholar
  24. de Vries JJ, Selaolo ET, Beekman HE (2000) Groundwater recharge in the Kalahari, with reference to paleo-hydrologic conditions. J Hydrol 238:110–123CrossRefGoogle Scholar
  25. Ebert JI, Hitchcock RK (1978) Ancient lake Makgadikgadi, Botswana: mapping measurement and palaeoclimate significance. Palaeoecol Afr 10(11):47–56Google Scholar
  26. Eckardt FD, Bryant RG, McCulloch G, Spiro B, Wood WW (2008) The hydrochemistry of a semi-arid pan basin case study: Sua Pan, Makgadikgadi, Botswana. Appl Geochem 23:1563–1580CrossRefGoogle Scholar
  27. Filippov A, Riedel F (2009) The late Holocene mollusc fauna of the Aral Sea and its biogeographical and ecological interpretation. Limnologica 39:67–85CrossRefGoogle Scholar
  28. Fornace KL, Hughen KA, Shanahan TM, Fritz SC, Baker PA, Sylvia SP (2014) A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth Planet Sci Lett 408:263–271CrossRefGoogle Scholar
  29. Gabriel KR (2002) Goodness of fit of biplots and correspondence analysis. Biometrika 89:423–436CrossRefGoogle Scholar
  30. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefGoogle Scholar
  31. Gasse F (1986) East African diatoms—taxonomy, ecological distribution. Bibl Diatomol 11:1–201Google Scholar
  32. Gasse F, Juggins S, Ben Khelifa L (1995) Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeogr Palaeoclimatol Palaeoecol 117:31–54CrossRefGoogle Scholar
  33. Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 27:2316–2340CrossRefGoogle Scholar
  34. Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids—new dates for ancient fish radiations. Mol Biol Evol 24:1269–1282CrossRefGoogle Scholar
  35. Geyh MA, Heine K (2014) Several distinct wet periods since 420 ka in the Namib Desert inferred from U-series dates of speleothems. Quat Res 81(2):381–391CrossRefGoogle Scholar
  36. Grey DRC, Cooke HJ (1977) Some problems in the Quaternary evolution of the landforms of northern Botswana. CATENA 4:123–133CrossRefGoogle Scholar
  37. Grimm EC (1991–2011) Tilia®Version 1.7.16 (Computer Software) Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  38. Grove AT (1969) Landforms and climatic change in the Kalahari and Ngamiland. Geogr J 135:191–212CrossRefGoogle Scholar
  39. Gumbricht T, McCarthy TS, Merry CL (2001) The topography of the Okavango Delta, Botswana, and its tectonic and sedimentological implications. S Afr J Sci 104:243–264Google Scholar
  40. Haddon IG, McCarthy TS (2005) The Mesozoic–Cenozoic interior sag basins of central Africa—the Late-Cretaceous-Cenozoic Kalahari and Okavango basins. J Afr Earth Sci 43:316–333CrossRefGoogle Scholar
  41. Hecky RE, Kilham P (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol Oceanogr 18:53–71CrossRefGoogle Scholar
  42. Heine K (1981) Aride und pluviale Bedingungen während der letzten Kaltzeit in der Südwest-Kalahari (südliches Afrika)(Arid and pluvial conditions during the last glacial in the southwest Kalahari (southern Africa)). Z Geomorphol NF 38:1–37Google Scholar
  43. Heine K (1982) The main stages of the Late Quaternary evolution of the Kalahari region, southern Africa. Palaeoecol Afr 15:53–76Google Scholar
  44. Heine K (1987) Zum Alter jungquartärer Seespiegelschwankungen in der Mittleren Kalahari, südliches Afrika (On the age of late Quaternary lake level fluctuations in the Middle Kalahari, southern Africa). Palaeoecol Afr 18:73–101Google Scholar
  45. Heine K (1988) Southern African palaeoclimates 35–25 ka ago: a preliminary summary. Palaeoecol Afr 19:305–315Google Scholar
  46. Henn BM, Gignoux CR, Jobin M, Granka JM, Macpherson JM, Kidd JM, Rodríguez-Botigué L, Ramachandran S, Hon L, Brisbin A, Lin AA, Underhill PA, Comas D, Kidd KK, Norman PJ, Parham P, Bustamante CD, Mountain JL, Feldman MW (2011) Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. PNAS 108(13):5154–5162CrossRefGoogle Scholar
  47. Henshilwood CS, d’Errico F, Yates R, Jacobs Z, Tribolo C, Duller GAT, Mercier N, Sealy JC, Valladas H, Watts I, Wintle AG (2002) Emergence of modern human behavior: middle Stone Age engravings from South Africa. Science 295(5558):1278–1280CrossRefGoogle Scholar
  48. Holmgren K, Karlén W, Lauritzen SE, Lee-Thorp JA, Partridge TC, Piketh S, Repinski P, Stevenson C, Svenered O, Tyson PD (1999) A 3000-year high-resolution stalagmite based record of palaeoclimate for northeastern South Africa. Holocene 9:295–309CrossRefGoogle Scholar
  49. Holmgren K, Lee-Thorp JA, Cooper GRJ, Lundblad K, Partridge TC, Scott L, Sithaldeen R, Talma AS, Tyson PD (2003) Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat Sci Rev 22:2311–2326CrossRefGoogle Scholar
  50. Hürkamp K, Völkel J, Heine K, Bens O, Leopold M, Winkelbauer J (2011) Late Quaternary environmental changes from aeolian and fluvial geoarchives in the south-western Kalahari, South Africa: implications for past African climate dynamics. S Afr J Geol 114:459–474CrossRefGoogle Scholar
  51. Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the orgin of modern humans. Nature 408:708–713CrossRefGoogle Scholar
  52. Jacobs Z, Roberts RG (2009) Catalysts for Stone Age innovations. Commun Integr Biol 2(2):191–193CrossRefGoogle Scholar
  53. Jollifer IT (1986) Principal components analysis. Springer, New YorkCrossRefGoogle Scholar
  54. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff W (2007) Orbital and millennial Antarctic climate variability over the past 800,000 Years. Science 317:793–796CrossRefGoogle Scholar
  55. Joyce DA, Lunt DH, Bills R, Turner GF, Katongo C, Duftner N, Sturmbauer C, Seehausen O (2005) An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435:90–95CrossRefGoogle Scholar
  56. Kelly MG, Bennion H, Cox EJ, Goldsmith B, Jamieson J, Juggins S, Mann DG, Telford RJ (2005) Common freshwater diatoms of Britain and Ireland—an interactive key. Environment Agency, Bristol:
  57. Kinabo BD, Atekwana EA, Hogan JP, Modisi MP, Wheaton DD, Kampunzu AB (2007) Early structural development of the Okavango rift zone, NW Botswana. J Afr Earth Sci 48:125–136CrossRefGoogle Scholar
  58. Kostrova SS, Meyer H, Tarasov PE, Bezrukova EV, Chapligin B, Kossler A, Pavlova LA, Kuzmin MI (2016) Oxygen isotope composition of diatoms from sediments of Lake Kotokel. Russ Geol Geophys 57:1239–1247CrossRefGoogle Scholar
  59. Krammer K (2002) Cymbella. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 3. ARG Gantner Verlag KG, RuggellGoogle Scholar
  60. Krammer K, Lange-Bertalot H (1997) Bacillariophyceae. Part 1, Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/1 (Freshwater flora from Central Europe). Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  61. Krammer K, Lange-Bertalot H (1999) Bacillariophyceae. Part 2, Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2 (Freshwater flora from Central Europe). Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  62. Krammer K, Lange-Bertalot H (2000) Bacillariophyceae. Part 3, Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3 (Freshwater flora from Central Europe). Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  63. Krammer K, Lange-Bertalot H (2004) Bacillariophyceae. Part 4, Achnanthaceae, Kritische Ergänzungen zu Achnanthes s.i., Navicula s.str., Gomphonema. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4 (Freshwater flora from Central Europe). Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  64. Kulongoski JT, Hilton DR (2004) Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophys Res Lett. doi: 10.1029/2003GL019238 Google Scholar
  65. Kusber W-H, Cocquyt CZ (2012) Craticula elkab (O. Müller ex O. Müller) Lange-Bertalot, Kusber & Cocquyt, comb. nov.—Typification and observations based on African sediment core material. Diatom Res 22:117–126CrossRefGoogle Scholar
  66. Lee-Thorp JA, Holmgren K, Lauritzen SE, Linge H, Moberg A, Partridge TC, Stevenson C, Tyson PD (2001) Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophys Res Lett 28:4507–4510CrossRefGoogle Scholar
  67. Leipe C, Demske D, Tarasov PE, Wünnemann B, Riedel F, HIMPAC Project Members (2014) Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human–environmental interactions. Quat Int 348:113–129CrossRefGoogle Scholar
  68. Leng MJ, Barker PA (2006) A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Sci Rev 75:5–27CrossRefGoogle Scholar
  69. Leng MJ, Henderson ACG (2013) Recent advances in isotopes as palaeolimnological proxies. J Paleolimnol 49:481–496CrossRefGoogle Scholar
  70. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831CrossRefGoogle Scholar
  71. Leng MJ, Sloane HJ (2008) Combined oxygen and silicon isotope analysis of biogenic silica. J Quat Sci 23:313–319CrossRefGoogle Scholar
  72. Levkov Z (2009) Amphora sensu lato. In: Lange-Bertalot H (ed) Diatoms of Europe, vol 5. ARG Gantner KG, RuggellGoogle Scholar
  73. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319(5866):1100–1104CrossRefGoogle Scholar
  74. Lotter AF, Birks HJB (1993) The impact of the Laacher See tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J Quat Sci 8:263–276CrossRefGoogle Scholar
  75. Mackay AW, Davidson T, Wolski P, Woodward S, Mazebedi R, Masamba WRL, Todd M (2012) Diatom sensitivity to hydrological and nutrient variability in a subtropical, flood-pulse wetland. Ecohydrology 5:491–502CrossRefGoogle Scholar
  76. Mallick DIJ, Habgood F, Skinner AC (1981) A geological interpretation of Landsat imagery and airphotography of Botswana. Overseas Geol Mineral Resour 56:1–35Google Scholar
  77. Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I, Williams HM (2007) Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905–909CrossRefGoogle Scholar
  78. Mischke S, Wünnemann B (2006) The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: possible palaeoclimatic implications. Quat Int 154–155:100–112CrossRefGoogle Scholar
  79. Mitrofanova EY, Sutchenkova OS, Lovtskaya OV (2016) Lake Teletskoye (Altai, Russia): reconstruction of the environment and prediction for its changes according to the composition and quantity of diatoms in the bottom sediments. Russ Geol Geophys 57:1321–1333CrossRefGoogle Scholar
  80. Moore AE, Cotterill FPD, Eckardt FD (2012) The evolution and ages of Makgadikgadi palaeo-lakes—consilient evidence from Kalahari drainage evolution, Botswana. S Afr J Geol 115:385–413CrossRefGoogle Scholar
  81. Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediments for diatom oxygen isotope analysis. J Paleolimnol 31:391–401CrossRefGoogle Scholar
  82. Murray A, Wintle A (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73CrossRefGoogle Scholar
  83. Nugent C (1990) The Zambezi River–tectonism, climatic change and drainage evolution. Palaeogeogr Palaeoclimat Palaeoecol 78:55–69CrossRefGoogle Scholar
  84. Passarge S (1904) Die Kalahari (The Kalahari). Dietrich Riemer, BerlinGoogle Scholar
  85. Patrick R (1977) The ecology of freshwater diatoms—diatom communities. In: Werner D (ed) The biology of diatoms. University of California Press, Berkeley, pp 284–332Google Scholar
  86. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. HESSD 4:439–473Google Scholar
  87. Podgorski JE, Green AG, Kgotlhang L, Kinzelbach WKH, Kalscheuer T, Auken E, Ngwisanyi T (2013) Paleo-megalake and paleo-megafan in southern Africa. Geology 41:1155–1158CrossRefGoogle Scholar
  88. Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat Meas 23:497–500CrossRefGoogle Scholar
  89. Riedel F, Erhardt S, Chauke C, Kossler A, Shemang E, Tarasov P (2012) Evidence for a permanent lake in Sua Pan (Kalahari, Botswana) during the early centuries of the last millenium indicated by distribution of Baobab trees (Adansonia digitata) on “Kubu Island”. Quat Int 253:67–73CrossRefGoogle Scholar
  90. Riedel F, Henderson ACG, Heußner KU, Kaufmann G, Kossler A, Leipe C, Shemang E, Taft L (2014) Dynamics of a Kalahari long-lived mega-lake system—hydromorphological and limnological changes in the Makgadikgadi Basin (Botswana) during the terminal 50 ka. Hydrobiologia 739:25–53CrossRefGoogle Scholar
  91. Ringrose S, Huntsman-Mapila P, Kampunzu AB, Downey WS, Coetzee SH, Vink B, Matheson W, Vanderpost C (2005) Sedimentological and geochemical evidence for palaeo-environmental change in the Makgadikgadi subbasin, in relation to the MOZ rift depression, Botswana. Palaeogeogr Palaeoclimatol Palaeoecol 217:265–287CrossRefGoogle Scholar
  92. Rito T, Richards MB, Fernandes V, Alshamali F, Cerny V, Pereira L, Soares P (2013) The first modern human dispersal across Africa. PLoS ONE 8(11):e80031CrossRefGoogle Scholar
  93. Robbins LH, Brook GA, Murphy ML, Ivester AH, Campbell AC (2016) The Kalahari during MIS 6–2 (190–12 ka): archaeology, paleoenvironment, and population dynamics. In: Jones SC, Stewart BA (eds) Africa from MIS 6–2: population dynamics and palaeoenvironments—vertebrate paleobiology and paleoanthropology series. Springer, Heidelberg, pp 175–193CrossRefGoogle Scholar
  94. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohman KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records, Geophysical monograph 78, pp 1–36Google Scholar
  95. Schlungbaum G, Baudler H (2001) Die Vielfalt innerer Küstengewässer an der südlichen Ostsee—eine Übersicht von der Flensburger Förde bis zum Kurischen Haff, Teil 1 Entwicklungsgeschichte, Morphologie, Hydrologie und Hydrographie (The diversity of interior coastal waters at the southern Baltic Sea—an overview from the Flensburg Fjord to the Curonian Lagoon, part 1 history of development, morphology, hydrology and hydrography). Rostock Meeresbiolog Beitr 8:5–61Google Scholar
  96. Scholz CA, Johnson TC, Cohen AS, King JW, Peck JA, Overpeck JT, Talbot MR, Brown ET, Kalindekafe E, Amoako PYO, Lyons RP, Shanahan TM, Castañeda IS, Heil CW, Forman SL, McHargue LR, Beuning KR, Gomez J, Pierson J (2007) East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. PNAS 104(42):16416–16421CrossRefGoogle Scholar
  97. Schultheiß R, Van Bocxlaer B, Riedel F, von Rintelen T, Albrecht C (2014) Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evol Biol 14:42CrossRefGoogle Scholar
  98. Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR, Harris RS, Petersen DC, Zhao FQ, Qi J, Alkan C, Kidd JM, Sun YZ, Drautz DI, Bouffard P, Muzny DM, Reid JG, Nazareth LV, Wang QY, Burhans R, Riemer C, Wittekindt NE, Moorjani P, Tindall EA, Danko CG, Siang Teo W, Buboltz AM, Zhang ZH, Ma QY, Oosthuysen A, Steenkamp AW, Oosthuisen H, Venter P, Gajewski J, Zhang Y, Franklin Pugh B, Makova KD, Nekrutenko A, Mardis ER, Patterson N, Pringle TH, Chiaromonte F, Mullikin JC, Eichler EE, Hardison RC, Gibbs RA, Harkins TT, Hayes VM (2010) Complete Khoisan and Bantu genomes from southern Africa. Nature 463:943–947CrossRefGoogle Scholar
  99. Seidov D, Maslin M (2001) Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard–Oeschger events. J Quat Sci 16:321–328CrossRefGoogle Scholar
  100. Shaw PA, Stokes S, Thomas DSG, Davies FBM, Holmgren K (1997) Palaeoecology and age of a Quaternary high lake level in the Makgadikgadi Basin of the Middle Kalahari, Botswana. S Afr J Sci 93:273–276Google Scholar
  101. Shemang EM, Molwalefhe LN (2011) Geomorphic landforms and tectonism along the eastern margin of the Okavango Rift Zone, north western Botswana as deduced from geophysical data in the area. In: Sharkov EV (ed) New frontiers in tectonic research—general problems, sedimentary basins and island arcs. InTech, Rijeka, pp 169–182Google Scholar
  102. Shi N, Schneider R, Beug HJ, Dupont LM (2001) Southeast trade wind variations during the last 135 kyr: evidence from pollen spectra in eastern South Atlantic sediments. EPSL 187:311–321CrossRefGoogle Scholar
  103. Stachura-Suchoples K (2001) Bioindicative values of dominant diatom species from the Gulf of Gdansk, Southern Baltic Sea, Poland. In: Jahn R, Kociolek JP, Witkowski A, Compère P (eds) Lange-Bertalot Festschrift. ARG Gantner KG, Ruggell, pp 477–490Google Scholar
  104. Stokes S, Thomas DSG, Washington R (1997) Multiple episodes of aridity in southern Africa since the last interglacial period. Nature 388:154–158CrossRefGoogle Scholar
  105. Street FA, Grove AT (1976) Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. Nature 261:385–390CrossRefGoogle Scholar
  106. Stute M, Talma AS (1998) Glacial temperature and moisture transport regimes reconstructed from noble gases and δ18O, Stampriet aquifer, Namibia. Isotope techniques in the study of environmental change. IAEA, Vienna, pp 307–318Google Scholar
  107. Stuut JBW, Prins MA, Schneider RR, Weltje GJ, Jansen JHF, Postma G (2002) A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar Geol 180:221–233CrossRefGoogle Scholar
  108. ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination Version 4.5. Microcomputer Power, Ithaca, New YorkGoogle Scholar
  109. Thomas DSG, Shaw PA (1991) The Kalahari environment. Cambridge University Press, CambridgeGoogle Scholar
  110. Tishkoff SA, Gonder MK, Henn BM, Mortensen H, Knight A, Gignoux C, Fernandopulle N, Lema G, Nyambo TB, Ramakrishnan U, Reed FA, Mountain JL (2007) History of click-speaking populations of Africa inferred from mtDNA and Y chromosome genetic variation. Mol Biol Evol 24(10):2180–2195CrossRefGoogle Scholar
  111. Urrego DH, Sánchez Goñi MF, Daniau AL, Lechevrel S, Hanquiez V (2015) Increased aridity in southwestern Africa during the warmest periods of the last interglacial. Clim Past 11:1417–1431CrossRefGoogle Scholar
  112. van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  113. van Zinderen Bakker EM (1976) The evolution of Late-Quaternary palaeoclimates of southern Africa. Palaeoecol Afr 9:160–202Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  2. 2.Department of GeographyUniversität GießenGiessenGermany
  3. 3.School of Geography, Politics and SociologyNewcastle UniversityNewcastle upon TyneUK
  4. 4.NERC Isotope Geosciences FacilityBritish Geological SurveyNottinghamUK
  5. 5.Centre for Environmental GeochemistryUniversity of NottinghamNottinghamUK
  6. 6.Department of Geography, Environmental Change Research CentreUCLLondonUK
  7. 7.Department of Earth and Environmental SciencesBotswana International University of Science and TechnologyPalapyeBotswana

Personalised recommendations