Advertisement

Journal of Paleolimnology

, Volume 59, Issue 1, pp 59–79 | Cite as

Five Younger Dryas black mats in Mexico and their stratigraphic and paleoenvironmental context

  • Isabel Israde-Alcántara
  • G. Domínguez-Vázquez
  • S. Gonzalez
  • J. Bischoff
  • A. West
  • D. Huddart
Original paper

Abstract

The Younger Dryas interval (YD) was a period of widespread, abrupt climate change that occurred between 12,900 and 11,700 cal yr BP (10,900–10,000 14C BP). Many sites in the Northern Hemisphere preserve a sedimentary record across the onset of the YD interval, including sites investigated in sedimentary basins located in central Mexico (Chapala, Cuitzeo, Acambay), the Basin of Mexico (Tocuila), and northern Mexico (El Cedral). Deposits consist of lacustrine or marginal lake sediments that were deposited during the Pleistocene and the Holocene. At the Tocuila and Acambay sites, Pleistocene fossil vertebrate assemblages, mainly mammoths (Mammuthus columbi), are found in association with a distinctive organic layer, sometimes called the black mat that formed during the YD. At the Chapala, Cuitzeo, Acambay, and Tocuila sites the black mats contain a suite of distinctive microscopic and mineralogical signatures and are accompanied by a sharp change in the depositional environments as supported by diatom and pollen studies reported here. The signatures include magnetic, Fe-rich microspherules, silica melted droplets with aerodynamic shapes (tektites), large amounts of charcoal, and sometimes nanodiamonds (Cuitzeo), all of which were deposited at the onset of the YD. The geochemistry of the microspherules indicates that they are not anthropogenic, authigenic or of cosmic or volcanic origin, and instead, were produced by melting and quenching of terrestrial sediments. Here, we present the stratigraphy at five field sites, the analyses of magnetic microspherules, including major element composition and scanning electron microscopy images. All of these materials are associated with charcoal and soot, which are distinctive stratigraphic markers for the YD layer at several sites in Mexico.

Keywords

Stratigraphy Lacustrine Magnetic microspherules Abrupt change in paleoenvironments Charcoal 

Notes

Acknowledgements

The authors wish to thank the economic support from CONACYT, Mexico, project CB 2015-257647, and the Universidad Michoacana de San Nicolás de Hidalgo CIC 2015, 2016. Authors want to thank to Dr. Hong Chun Li, for the Acambay core dating, Dr. Pedro Zarate for sharing the C 14dating and samples from the base of the Chapala long core, Ricardo Saucedo, José Ramón Torres, of University of San Luis Potosí for the help in field work at El Cedral and Francisco Solorio and Lourdes Mondragón for the SEM analysis at the Instituto de Investigaciones Metalúrgicas y Materiales and Tecnológico de Morelia respectively and the helpful comments of Victor Hugo Garduño, and two referees and the editor that improved this manuscript.

References

  1. Almanza Alvarez JS, Israde I, Segura-Garcia V (2016) Periphytic diatoms of lake Patzcuaro, Michoacán,Mexico. Hidrobiologica 26(2):161–185Google Scholar
  2. Andronikov AV, Lauretta DS, Andronikva IE, Maxwell RJ (2011) On the possibility of a Late Pleistocene extraterrestrial impact: LA-ICP-MS analysis of the Black Mat and Usello Horizon samples. In: Abstract at 74th meteoritical society meeting, London, UK, August 8–12Google Scholar
  3. Andronikov AV, Rudnickaite E, Dante S, Lauretta IE, Andronikova K, Šinkunas P, Melešyte M (2013) In search for fingerprints of an impact: HR-ICP-MS. Study of late Pleistocene lake sediments of Lithuania. In: Conference: Palaeolandscapes from Saalian to Weichselian, South Eastern Lithuania. International field symposiumGoogle Scholar
  4. Andronikov AV, Andronikova IE, Clayton W, Loehn W, Lafuente B, Ballenger J, Crawford GT, Lauretta DS (2016) Implications from chemical, structural and mineralogical studies of magnetic microspherules from around the lower Younger Dryas Boundary (New Mexico, USA). Geogr Ann Ser A Phys Geogr 98(1):39–59CrossRefGoogle Scholar
  5. Arce JL, Macias JL, Vazquez Selem L (2003) The 10.5 ka Plinian eruption of Nevado de Toluca, Mexico, stratigraphical and hazard implications. Geol Soc Am Bull 15:230–248CrossRefGoogle Scholar
  6. Battarbee R, Jones V, Flower R, Cameron N, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol J, Birks J, Last W, Bradley R, Alverson K (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Springer, Berlin, pp 155–202CrossRefGoogle Scholar
  7. Bradbury JP (1971) Paleolimnology of Lake Texcoco, Mexico, evidence from diatoms. Limnol Oceanogr 16:180–200CrossRefGoogle Scholar
  8. Bronk-Ramsey C (2005). OxCAL program, V.3.10 http://c14.arch.ox.ac/embed.php
  9. Bronk-Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  10. Bunch TE, Hermes RE, Moore AMT, Kennett DJ, Weaver JC, Wittke JH, DeCarli PS, Bischoff JL, Hillman GC, Howard GA, Kimbel DR, Kletetschka G, Lipo CP, Sakai S, Revay Z, West A, Firestone RB, Kennett JP (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Natl Acad Sci USA 109(28):E1903–E1912CrossRefGoogle Scholar
  11. Bush MB, Correa-Metrio AY, Hodell DA, Brenner M, Anselmetti FS, Ariztegui D, Mueller AD, Curtis JH, Grzesik DA, Burton C, Gilli A (2009) Re-evaluation of climate change in Lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. In: Past climate variability in South America and surrounding regions, developments in paleoenvironmental research, vol 14, Chapter 5, pp 113–128Google Scholar
  12. Carlson A (2010) What caused the Younger Dryas Cold Event? Geology 384:383–384CrossRefGoogle Scholar
  13. Carlson AE, Clark PU, Haley BA, Klinkhammer GP, Simmons K, Brook EJ, Meissner K (2007) Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proc Natl Acad Sci 104:6556–6561CrossRefGoogle Scholar
  14. Choi KY, Kim Y, Chiong D, Kim YH (2014) Paleoclimate signals of Lake Hovsgol, Mongolia, over the last 19,000 Years Using Authigenic Beryllium Isotopes. Radiocarbon 56(3):1139–1150CrossRefGoogle Scholar
  15. Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw JA (2015) Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349(6248):602–606CrossRefGoogle Scholar
  16. De Mets C, Stein S (1990) Present day kinematics of the Rivera Plate and implications for tectonics in Southern Mexico. J Geophys Res 95:931–948Google Scholar
  17. Dressler BO, Reimond UW (2001) Terrestrial impact melt rocks and glasses. Earth Sci Rev 56:205–284CrossRefGoogle Scholar
  18. Faegri K, Iversen J (1989) Textbook of pollen analysis. Blackwell, London, p 287Google Scholar
  19. Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, Schultz PH, Belgya T, Kennett DJ, Erlandson JM, Dickenson OJ (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci 104:16016–16021CrossRefGoogle Scholar
  20. González S, Huddart D (2007) Paleoindians and megafaunal extinctions in the Basin of Mexico: the role of the 10.5 K Upper Toluca Pumice eruption. In: Grattan J, Torrence R (eds) Living under the shadow: the archaeological, cultural and environmental impact of volcanic eruptions. Left Coast Press, Walnut Creek, pp 90–106Google Scholar
  21. González S, Huddart D, Israde-Alcántara I, Dominguez-Vazquez G, Bischoff J (2014) Tocuila Mammoths, Basin of Mexico: Late Pleistocene–Early Holocene stratigraphy and origin of the bone assemblages. Quat Sci Rev 96:222–239CrossRefGoogle Scholar
  22. González S, Huddart D, Israde-Alcántara I, Dominguez-Vazquez G, Bischoff J, Felstead NJ (2015) Paleo-Indian sites from the Basin of Mexico: new evidence from stratigraphy, tephrochronology and dating. Quat Int 363:4–19CrossRefGoogle Scholar
  23. Harris Parks E (2016) The micromorphology of Younger Dryas-aged black mats from Nevada. Quat Res 85:94–106CrossRefGoogle Scholar
  24. Haynes CV (2008) Younger Dryas “black mats” and the Rancholabrean termination in North America. Proc Natl Acad Sci 105:6520–6525CrossRefGoogle Scholar
  25. Holliday VT (1985) Archaeological geology of the Lubbock Lake site, southern high plains of Texas. Geol Soc Am Bull 96:1483–1492CrossRefGoogle Scholar
  26. Islebe GA, Hooghiemstra H (2006) Effects of the Younger Dryas cooling event on late Quaternary montane oak forest in Costa Rica. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests, vol 185. Studies in ecology. Springer, Berlin, pp 29–37CrossRefGoogle Scholar
  27. Israde-Alcántara I, Miller WE, Garduño-Monroy VH, Barron J, Rodriguez-Pascua M (2010) Palaeoenvironmental significance of diatom and vertebrate fossils from Late Cenozoic Tectonic Basins in west-central México: a review. Quat Int 219:79–94CrossRefGoogle Scholar
  28. Israde-Alcántara I, Bischoff JL, Domíniguez-Vásquez G, Li H-C, DeCarli PS, Bunch TE, Wittke JH, Weaver JC, Firestone RB, West A, Kennett JP, Mercer C, Xie S, Richman EK, Kinzie CR, Wolbach WS (2012) Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc Natl Acad Sci USA 109:E738–E747CrossRefGoogle Scholar
  29. Kennett DJ, Kennett JP, West A, West GJ, Bunch TE, Culleton BJ, Erlandson JM, Que Hee SS, Johnson JR, Mercer C, Shen F, Sellers M, Stafford TW Jr, Stich A, Weaver JC, Wittke JH, Wolbach WS (2009) Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proc Natl Acad Sci USA 106(31):12623–12628CrossRefGoogle Scholar
  30. Kennett JP, Kennett DJ, Culleton BJ, Tortosa JE, Bischoff JL, Bunch TE, Daniel IR, Erlandson JM, Ferraro D, Firestone RB, Goodyear AC (2015) Bayesian chronological analyses consistent with synchronous age of 12835–12735 cal yr BP for Younger Dryas boundary on four continents. Proc Natl Acad Sci 112:4344–4353CrossRefGoogle Scholar
  31. Kinzie CR, Hee SS, Stich A, Tague KA, Mercer C, Razink JJ, Kennett DJ, DeCarli PS, Bunch TE, Wittke JH, Israde-Alcántara I (2014) Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal yr BP. J Geol 122:475–506CrossRefGoogle Scholar
  32. Krammer K, Lange-Bertalot H (1997a) Bacillariophyceae 2/1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßbwasserflora von Mitteleuropa. Gustav Fisher, Stuttgart, p 876Google Scholar
  33. Krammer K, Lange-Bertalot H (1997b) Bacillariophyceae 2/2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßbwasserflora von Mitteleuropa. Gustav Fisher, Stuttgart, p 437Google Scholar
  34. Krammer K, Lange-Bertalot H (2004) Bacillariophyceae. 2/3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßbwasserflora von Mitteleuropa. Gustav Fisher, Stuttgart, p 598Google Scholar
  35. Kurbatov AV, Mayewski PA, Steffensen JP, West A, Kennett DJ, Kennett JP, Bunch TE, Handley M, Introne DS, Hee Q, Shane S (2010) Discovery of a nanodiamond rich layer in the Greenland ice sheet. J Glaciol 56:747–757CrossRefGoogle Scholar
  36. LeCompte MA, Goodyear AC, Demitroff MN, Batchelor D, Vogel EK, Mooney C, Rock BN, Seidel AW (2012) Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proc Natl Acad Sci USA 109:E2960–E2969CrossRefGoogle Scholar
  37. Lorenzo JL, Mirambell L (1986) Preliminary report on archeological and paleoenvironmental studies in the area of El Cedral, SanLuis Potosí, México. In: Bryan AL (ed) New evidence for the Pleistocene peopling of the Americas. Center for the Study of the Early Man, University of Maine, Peopling of the Americas, Symposia Series, Orono, Maine, pp 107–113Google Scholar
  38. Lozano García S, Ortega Guerrero B (1994) Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 109(2–4):177–191CrossRefGoogle Scholar
  39. Mahaney WC, Kalm V, Krinsley DH, Tricart PM, Schwartz S, Dohm J, Kim KJ, Kapran B, Milner MW, Beukens R, Boccia S, Hancock RGV, Hart KM, Kelleher B (2010a) Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: the black mat enigma. Geomorphology 116:48–57CrossRefGoogle Scholar
  40. Mahaney WC, Krinsley D, Kalm V (2010b) Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: correlation with experimentally heated quartz and feldspar. Sed Geol 231:31–40CrossRefGoogle Scholar
  41. Mahaney WC, Keiser L, Krinsley DH, West A, Dirszowsky R, Allen CR, Costa P (2014) Recent developments in the analysis of the Black Mat layer and cosmic impact at 12.8 ka. Geogr Ann Ser A Phys Geogr 96:99–111CrossRefGoogle Scholar
  42. Meltzer DJ, Holliday VT, Cannon MD, Miller DS (2014) Chronological evidence fails to support claim of an isochronous widespread layer of dated to 12,800 years ago. Natl Acad Sci USA, Proc. doi: 10.1073/pnas.1401150111 Google Scholar
  43. Mirambell L (Coordinadora) (2012) Rancho “La Amapola”, Cedral. Un sitio arqueológico-paleontologico Pleistocenico-Holocenico con restos de actividad humana. Instituto Nacional de Antropología e Historia, México. Serie MemoriasGoogle Scholar
  44. Mooser F (1967) Tefracronologia de la Cuenca de México para los últimos treinta mil años. Boletín del INAH de México 30:12–15Google Scholar
  45. Morett L, Arroyo-Cabrales J, Polaco OJ (1998) Tocuila, a remarkable mammoth site in the Basin of Mexico. Curr Res Pleistocene 15:118–120Google Scholar
  46. Ortega B, Caballero C, Lozano S, Israde I, Vilaclara G (2002) 52,000 years of environmental history in Zacapu Basin, Michoacán, México: the magnetic record. Earth Planet Sci Lett 202:663–675CrossRefGoogle Scholar
  47. Ortega-Guerrero B, Vazquez G, Caballero M, Israde I, Lozano-Garcia S, Schaaf P, Torres E (2010) Late Pleistocene: Holocene record of environmental changes in Lake Zirahuen, Central Mexico. J Paleolimnol 44:745–760CrossRefGoogle Scholar
  48. Petaev MI, Jacobsen SB (2004) Differentiation of metal-rich meteoritic parent bodies. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe–Ni metal. Meteorit Planet Sci 39:1685–1697CrossRefGoogle Scholar
  49. Quade J, Forester RM, Pratt WL, Carter C (1998) Black mats, spring-fed streams, and late-glacial-age recharge in the Southern Great Basin. Quat Res 49:129–148CrossRefGoogle Scholar
  50. Renssen H, Mairesse A, Goosse H, Mathiot P, Heir O, Roche DM, Nisancioglu KH, Valdes PJ (2015) Multiple causes of the Younger Dryas cold period. Nat Geosci 8:946–949CrossRefGoogle Scholar
  51. Ruiz FM, Abad AM, Bodergat P, Carbonel J, Rodriguez-Lazaro ML, Gonzalez-Regalado A, Toscano EX, Garcia J Prenda (2013) Freshwater ostracods as environmental tracers. Int J Environ Sci Technol 2013(10):1115–1128CrossRefGoogle Scholar
  52. Scott AC, Pinter N, Collinson ME, Hardiman M, Anderson RS, Brain AP, Smith SY, Marone F, Stampanoni M (2010) Fungus, no comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”. Geophys Res Lett 37:14302–14307CrossRefGoogle Scholar
  53. Siebe C, Schaaf P, Urrutia-Fucugauchi J (1999) Mammoth bones embedded in a late Pleistocene Lahar from Popocatépetl volcano, near Tocuila, central Mexico. Bull Geol Soc Am 111:1550–1562CrossRefGoogle Scholar
  54. Suter M, Quintero O, Johnson J (1992) Active faults and state of stress in the central part of the Mexican Volcanic Belt: the Venta de Bravo fault. J Geophys Res 97(B8):983–993CrossRefGoogle Scholar
  55. Suter M, Lopez Martinez M, Quintero O, Carillo M (2001) Trans-Mexican Volcanic Belt. Bull Geol Soc Am 113:693–703CrossRefGoogle Scholar
  56. Tarasov L, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665CrossRefGoogle Scholar
  57. Tian H, Schryvers D, Claeys P (2011) Nanodiamonds do not provide unique evidence for a Younger Dryas impact. Proc Natl Acad Sci USA 108:40–44CrossRefGoogle Scholar
  58. Torres-Rodríguez E, Lozano-García S, Figueroa-Rangel BL, Ortega-Guerrero B, Vázquez-Castro G (2012) Cambio ambiental y respuestas de la vegetación de los últimos 17,000 años en el centro de México: el registro del lago de Zirahuén. Revista Mexicana de Ciencias Geológicas 29(3):764–768Google Scholar
  59. Wittke CJ, Weaver JC, Bunch TE, Kennett JP, Kennett DG, Moore AM, Hillman GC, Tankersley KB, Goodyear AC, Moore C, Daniel Jr IR, Ray JH, Lopinot N, Ferraro D, Israde-Alcántara I, Bischoff JL, DeCarli P, Hermes R, Kloosterman J, Revay Z, Howard G, Kimbel D, Kletetschka G, Nabelek L, Lipo C, Sakai S, West A, Firestone R (2013) Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 yr ago. June 2013. www.pnas.org/cgi/doi/10.1073/pnas.1301760110. ISSN: 0027-8424
  60. Zárate del Valle P, Dörfler W, Albrechts C, Nelle O, Israde-Alcántara I (2015) CHAPHOLO: Paleolimnological evaluation of Lake Chapala (Western Mexico) During the Past 10,000 Years (CONACYT CB2011, Grant 168685, in Progress). PHASE I: Drilling Campaign. AGU fall meeting. 2014 Abstract ID: 13748 final paper Number: PP31A-1115Google Scholar
  61. Zarate del Valle P, Israde-Alcántara I, Domínguez-Vazquez G, Ingmar U, Espinoza-Ojeda I, Nelle O (2016) Climatic variability in western Mexico during Holocene (10,000 BP) interpreted from diatom and pollen record in sediment from Lake Chapala (CHAPHOLO Project, Conacyt Grant 168685). 35th International Geological Congress (IGC). Paper 4230. South Africa.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Ciencias de la TierraUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Faculty of BiologyUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  4. 4.GeochemistryUnited States Geological SurveyMenlo ParkUSA
  5. 5.GeoScience ConsultingDeweyUSA

Personalised recommendations