Journal of Paleolimnology

, Volume 58, Issue 3, pp 317–334 | Cite as

Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ~29 cal ka

  • Liv Heinecke
  • Steffen Mischke
  • Karsten Adler
  • Anja Barth
  • Boris K. Biskaborn
  • Birgit Plessen
  • Ingmar Nitze
  • Gerhard Kuhn
  • Ilhomjon Rajabov
  • Ulrike Herzschuh
Original paper


We present results of analyses on a sediment core from Lake Karakul, located in the eastern Pamir Mountains, Tajikistan. The core spans the last ~29 cal ka. We investigated and assessed processes internal and external to the lake to infer changes in past moisture availability. Among the variables used to infer lake-external processes, high values of grain-size end-member (EM) 3 (wide grain-size distribution that reflects fluvial input) and high Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes), are indicative of moister conditions. High values in EM1, EM2 (peaks of small grain sizes that reflect long-distance dust transport or fine, glacially derived clastic input) and TiO2 (terrigenous input) are thought to reflect greater influence of dry air masses, most likely of Westerly origin. High input of dust from distant sources, beginning before the Last Glacial Maximum (LGM) and continuing to the late glacial, reflects the influence of dry Westerlies, whereas peaks in fluvial input suggest increased moisture availability. The early to early-middle Holocene is characterised by coarse mean grain sizes, indicating constant, high fluvial input and moister conditions in the region. A steady increase in terrigenous dust and a decrease in fluvial input from 6.6 cal ka BP onwards points to the Westerlies as the predominant atmospheric circulation through to present, and marks a return to drier and even arid conditions in the area. Proxies for productivity (TOC, TOC/TN, TOC Br ), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC, δ18O Carb ) indicate changes within the lake. Low productivity characterised the lake from the late Pleistocene until 6.6 cal ka BP, and increased rapidly afterwards. Lake level remained low until the LGM, but water depth increased to a maximum during the late glacial and remained high into the early Holocene. Subsequently, the water level decreased to its present stage. Today the lake system is mainly climatically controlled, but the depositional regime is also driven by internal limnogeological processes.


Arid Central Asia Pamir Mountains Lake sediments XRF data Grain-size end-member modelling Geochemistry 



We thank Zafar Mahmoudov and Tim Jonas for help during fieldwork, Romy Zibulski for identification and discussions of the moss remains, and Matthias Röhl for support with core description. We furthermore thank Mark Brenner and two anonymous reviewers for their comments, which helped to improve this manuscript. We appreciate the financial support of the DFG (Grants Mi 730/15-1 and 15-2; and PhD scholarship for LH in the DFG Graduate School 1364).

Data Availability

The datasets generated and analysed for this study are available at Pangaea, doi: 10.1594/PANGAEA.876024.

Supplementary material

10933_2017_9980_MOESM1_ESM.docx (768 kb)
Supplementary material 1 (DOCX 768 kb)


  1. Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Sosin P, Kubik PW, Zech W (2006) Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev 25:1080–1096. doi: 10.1016/j.quascirev.2005.10.003 CrossRefGoogle Scholar
  2. Aichner B, Feakins SJ, Lee JE, Herzschuh U, Liu X (2015) High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past 11:619–633CrossRefGoogle Scholar
  3. Aizen EM, Aizen VB, Melack JM, Nakamura T, Ohta T (2001) Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol 21:535–556. doi: 10.1002/joc.626 CrossRefGoogle Scholar
  4. An Z, Colman SM, Zhou W, Li X, Brown ET, Jull AJT, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep. doi: 10.1038/srep00619 Google Scholar
  5. Biskaborn BK, Herzschuh U, Bolshiyanov DY, Schwamborn G, Diekmann B (2013) Thermokarst processes and depositional events in a tundra lake, Northeastern Siberia. Permafr Periglac Process 24:160–174. doi: 10.1002/ppp.1769 CrossRefGoogle Scholar
  6. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474. doi: 10.1214/ba/1339616472 Google Scholar
  7. Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295. doi: 10.1111/j.1502-3885.2006.tb01158.x CrossRefGoogle Scholar
  8. Boulton GS (1978) Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology 25:773–799. doi: 10.1111/j.1365-3091.1978.tb00329.x CrossRefGoogle Scholar
  9. Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 83–141Google Scholar
  10. Çağatay MN, Öğretmen N, Damcı E, Stockhecke M, Sancar Ü, Eriş KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat Sci Rev 104:97–116. doi: 10.1016/j.quascirev.2014.09.027 CrossRefGoogle Scholar
  11. Chen F-H, Chen J-H, Holmes J, Boomer I, Austin P, Gates JB, Wang N-L, Brooks SJ, Zhang J-W (2010) Moisture changes over the last millennium in arid Central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev 29:1055–1068. doi: 10.1016/j.quascirev.2010.01.005 CrossRefGoogle Scholar
  12. Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39:L01705. doi: 10.1029/2011GL050202 CrossRefGoogle Scholar
  13. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, USAGoogle Scholar
  14. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  15. Dietze M, Dietze E (2013) EMMAgeo: end-member modelling algorithm and supporting functions for grain-size analysis, R package version 0.9.0Google Scholar
  16. Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A (2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau China. Sediment Geol. doi: 10.1016/j.sedgeo.2011.09.014 Google Scholar
  17. Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quat Sci Rev 78:188–208. doi: 10.1016/j.quascirev.2013.07.025 CrossRefGoogle Scholar
  18. Ergashev AE (1979) The origin and typology of the Central Asian lakes and their algal flora. Int Rev Gesamten Hydrobiol 64:629–642Google Scholar
  19. Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C, Ohlendorf C, Paez MM, Quintana FA, Schäbitz F, Zolitschka B (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Long-Term Multi-Proxy Clim Reconstr Dyn S Am LOTRED-SA State Art Perspect 281:363–375. doi: 10.1016/j.palaeo.2009.01.012 Google Scholar
  20. Fuchs MC, Gloaguen R, Merchel S, Pohl E, Sulaymonova VA, Andermann C, Rugel G (2015) Millennial erosion rates across the Pamir based on 10 Be concentrations in fluvial sediments: dominance of topographic over climatic factors. Earth Surf Dyn Discuss 3:83–128CrossRefGoogle Scholar
  21. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  22. Hammer UT (1986) Saline lake ecosystems of the world. Springer, BerlinGoogle Scholar
  23. Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178. doi: 10.1016/j.quascirev.2005.02.006 CrossRefGoogle Scholar
  24. Huang X, Oberhänsli H, von Suchodoletz H, Prasad S, Sorrel P, Plessen B, Mathis M, Usubaliev R (2014) Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul. Quat Sci Rev 103:134–152. doi: 10.1016/j.quascirev.2014.09.012 CrossRefGoogle Scholar
  25. Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O (2007) 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat Res 67:400–410. doi: 10.1016/j.yqres.2007.01.007 CrossRefGoogle Scholar
  26. Komatsu T, Tsukamoto S (2015) Late Glacial lake-level changes in the Lake Karakul basin (a closed glacierized-basin), eastern Pamirs, Tajikistan. Quat Res 83:137–149. doi: 10.1016/j.yqres.2014.09.001 CrossRefGoogle Scholar
  27. Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117. doi: 10.1002/jqs.1438 CrossRefGoogle Scholar
  28. Landmann G, Reimer A, Lemcke G, Kempe S (1996) Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 122:107–118. doi: 10.1016/0031-0182(95)00101-8 CrossRefGoogle Scholar
  29. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285. doi: 10.1051/0004-6361:20041335 CrossRefGoogle Scholar
  30. Lauterbach S, Witt R, Plessen B, Dulski P, Prasad S, Mingram J, Gleixner G, Hettler-Riedel S, Stebich M, Schnetger B, Schwalb A, Schwarz A (2014) Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene 24:970–984. doi: 10.1177/0959683614534741 CrossRefGoogle Scholar
  31. Liu X, Herzschuh U, Wang Y, Kuhn G, Yu Z (2014) Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett 41:6265–6273. doi: 10.1002/2014GL060444 CrossRefGoogle Scholar
  32. Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201. doi: 10.1126/science.1228026 CrossRefGoogle Scholar
  33. Mathis M, Sorrel P, Klotz S, Huang X, Oberhänsli H (2014) Regional vegetation patterns at lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quat Sci Rev 89:169–185. doi: 10.1016/j.quascirev.2014.01.023 CrossRefGoogle Scholar
  34. Mayer LM, Macko SA, Mook WH, Murray S (1981) The distribution of bromine in coastal sediments and its use as a source indicator for organic matter. Org Geochem 3:37–42. doi: 10.1016/0146-6380(81)90011-5 CrossRefGoogle Scholar
  35. Meyers PA, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi: 10.1023/A:1008073732192 CrossRefGoogle Scholar
  36. Mischke S, Rajabov I, Mustaeva N, Zhang C, Herzschuh U, Boomer I, Brown ET, Andersen N, Myrbo A, Ito E, Schudack ME (2010) Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): a reconnaissance study. Palaeogeogr Palaeoclimatol Palaeoecol 289:10–24. doi: 10.1016/j.palaeo.2010.02.004 CrossRefGoogle Scholar
  37. Mischke S, Weynell M, Zhang C, Wiechert U (2013) Spatial variability of 14C reservoir effects in Tibetan Plateau lakes. Quat Int 313–314:147–155. doi: 10.1016/j.quaint.2013.01.030 CrossRefGoogle Scholar
  38. Morrill C, Overpeck JT, Cole JE, Liu K, Shen C, Tang L (2006) Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat Res 65:232–243. doi: 10.1016/j.yqres.2005.02.014 CrossRefGoogle Scholar
  39. Murari MK, Owen LA, Dortch JM, Caffee MW, Dietsch C, Fuchs M, Haneberg WC, Sharma MC, Townsend-Small A (2014) Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan–Tibetan orogen. Quat Sci Rev 88:159–182. doi: 10.1016/j.quascirev.2014.01.013 CrossRefGoogle Scholar
  40. Ni A, Nurtayev B, Petrov M, Tikhanovskaya A, Tomashevskaya I (2004) The share of a glacial feeding in water balance of Aral Sea and Karakul Lake. J Mar Syst 47:143–146. doi: 10.1016/j.jmarsys.2003.12.017 CrossRefGoogle Scholar
  41. Owen LA, Dortch JM (2014) Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat Sci Rev 88:14–54. doi: 10.1016/j.quascirev.2013.11.016 CrossRefGoogle Scholar
  42. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle J-P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  43. Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS et al (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4:461–475CrossRefGoogle Scholar
  44. Ramaswamy C (1962) Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the sub-tropical westerly jet streams. Tellus 14:337–349. doi: 10.1111/j.2153-3490.1962.tb01346.x CrossRefGoogle Scholar
  45. Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304CrossRefGoogle Scholar
  46. Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227. doi: 10.1016/S0031-0182(01)00339-X CrossRefGoogle Scholar
  47. Romanovsky VV (2002) Water level variations and water balance of Lake Issyk-Kul. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment. Springer, Netherlands, pp 45–57CrossRefGoogle Scholar
  48. Seong YB, Owen LA, Yi C, Finkel RC (2009) Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121:348–365. doi: 10.1130/B26339.1 CrossRefGoogle Scholar
  49. Shen J, Liu X, Wang S, Matsumoto Ryo (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int 136:131–140. doi: 10.1016/j.quaint.2004.11.014 CrossRefGoogle Scholar
  50. Strecker MR, Frisch W, Hamburger MW, Ratschbacher L, Semiletkin S, Zamoruyev A, Sturchio N (1995) Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan. Tectonics 14:1061–1079. doi: 10.1029/95TC00927 CrossRefGoogle Scholar
  51. Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R (2002) Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment Geol 152:263–277. doi: 10.1016/S0037-0738(02)00082-9 CrossRefGoogle Scholar
  52. Taft L, Mischke S, Wiechert U, Leipe C, Rajabov I, Riedel F (2014) Sclerochronological oxygen and carbon isotope ratios in Radix (Gastropoda) shells indicate changes of glacial meltwater flux and temperature since 4,200 cal yr BP at Lake Karakul, eastern Pamirs (Tajikistan). J Paleolimnol 52:27–41. doi: 10.1007/s10933-014-9776-4 CrossRefGoogle Scholar
  53. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol Isot Geosci Sect 80:261–279. doi: 10.1016/0168-9622(90)90009-2 CrossRefGoogle Scholar
  54. Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, IthacaGoogle Scholar
  55. Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153. doi: 10.1111/j.1365-3091.1987.tb00566.x CrossRefGoogle Scholar
  56. Van Campo E, Gasse F (1993) Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quat Res 39:300–313. doi: 10.1006/qres.1993.1037 CrossRefGoogle Scholar
  57. Vandenberghe J (2013) Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Sci Rev 121:18–30CrossRefGoogle Scholar
  58. Vandenberghe J, Renssen H, van Huissteden K, Nugteren G, Konert M, Lu H, Dodonov A, Buylaert J-P (2006) Penetration of Atlantic westerly winds into Central and East Asia. Quat Sci Rev 25:2380–2389. doi: 10.1016/j.quascirev.2006.02.017 CrossRefGoogle Scholar
  59. Walling DE, Moorehead PW (1989) The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiologia 176–177:125–149. doi: 10.1007/BF00026549 CrossRefGoogle Scholar
  60. Wang R, Zhang Y, Wünnemann B, Biskaborn BK, Yin H, Xia F, Zhou L, Diekmann B (2015) Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China. J Asian Earth Sci 107:140–150. doi: 10.1016/j.jseaes.2015.04.008 CrossRefGoogle Scholar
  61. Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29:503–549. doi: 10.1007/BF02775085 CrossRefGoogle Scholar
  62. Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438. doi: 10.1016/j.epsl.2008.07.054 CrossRefGoogle Scholar
  63. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254. doi: 10.1890/070140 CrossRefGoogle Scholar
  64. Wu G, Yao T, Xu B, Li Z, Tian L, Duan K, Wen L (2006) Grain size record of microparticles in the Muztagata ice core. Sci China Ser D 49:10–17. doi: 10.1007/s11430-004-5093-5 CrossRefGoogle Scholar
  65. Zech R, Abramowski U, Glaser B, Sosin P, Kubik PW, Zech W (2005) Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quat Res 64:212–220. doi: 10.1016/j.yqres.2005.06.002 CrossRefGoogle Scholar
  66. Zhang C, Mischke S (2009) A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quat Sci Rev 28:1970–1983. doi: 10.1016/j.quascirev.2009.03.007 CrossRefGoogle Scholar
  67. Zhao Y, Yu Z, Chen F, Zhang J, Yang B (2009) Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Sci Rev 97:242–256. doi: 10.1016/j.earscirev.2009.10.007 CrossRefGoogle Scholar
  68. Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015) Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep 5:13318. doi: 10.1038/srep13318 CrossRefGoogle Scholar
  69. Ziegler M, Jilbert T, de Lange GJ, Lourens LJ, Reichart G-J (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosystems. doi: 10.1029/2007GC001932 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Liv Heinecke
    • 1
    • 2
  • Steffen Mischke
    • 3
  • Karsten Adler
    • 2
  • Anja Barth
    • 4
  • Boris K. Biskaborn
    • 1
  • Birgit Plessen
    • 5
  • Ingmar Nitze
    • 1
    • 2
  • Gerhard Kuhn
    • 6
  • Ilhomjon Rajabov
    • 7
  • Ulrike Herzschuh
    • 1
    • 2
    • 8
  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchResearch Unit PotsdamPotsdamGermany
  2. 2.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdam-GolmGermany
  3. 3.Faculty of Earth SciencesUniversity of IcelandReykjavíkIceland
  4. 4.Institute of Geological SciencesFree University of BerlinBerlinGermany
  5. 5.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  6. 6.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  7. 7.Pilot Program for Climate Resilience SecretariatDushanbeTajikistan
  8. 8.Institute of Bochemistry and BiologyPotsdam-GolmGermany

Personalised recommendations