Journal of Paleolimnology

, Volume 58, Issue 2, pp 213–229 | Cite as

Nesseltalgraben, a new reference section of the last glacial period in southern Germany

  • Christoph MayrEmail author
  • Birgit Brandlmeier
  • Volker Diersche
  • Philipp Stojakowits
  • Uwe Kirscher
  • Renate Matzke-Karasz
  • Valerian Bachtadse
  • Michael Eigler
  • Ulrich Haas
  • Bernhard Lempe
  • Paula J. Reimer
  • Christoph Spötl
Original paper


In the northern Alpine region only a few lacustrine sediment sequences are known from the period of the last glacial, regionally assigned as Würmian. Even less is known about Alpine palaeoenvironments prior to the last glacial maximum (LGM). The recently discovered sediment sections at the Nesseltalgraben site (northern Alps, southern Germany) presented here, comprise an approximately 27-m-high, predominantly lacustrine composite profile below coarse clastic sediments assigned to the LGM and underlain by Permian–Triassic evaporitic and sandy clayey sediments of the Haselgebirge and Werfen-Formation. The Würmian lake sediments consist of carbonate mud layers representing cooler phases, and organic rich layers (compressed peat, organic mud), that were deposited during warmer periods. Bulk organic geochemical analyses suggest that predominantly algal organic matter was deposited during the cooler periods, while higher fractions of terrestrial vascular plants were admixed during warmer phases. A diamict represents an erosional unconformity and cuts the sediment sequence into a lower and an upper part. Paleomagnetic, palynostratigraphic and radiocarbon analyses place the lower part into the Marine Isotope Stage (MIS) 5c (Lower Würmian), while the upper part covers at least the period from 45 to 31 ka cal BP (MIS 3, Middle Würmian). Different explanations for the origin and spatiotemporal extent of the palaeolake are discussed. The most plausible sedimentary deposition is the formation of the small-scaled lake in a sinkhole in the evaporitic Haselgebirge Formation. The results highlight the significance of the Nesseltalgraben site as a new reference section of the last glacial period in the Northern Calcareous Alps and call for the necessity of further geochronological and paleoenvironmental studies at that site.


Lake sediments Berchtesgaden Würmian Geochemistry Carbon isotopes Pollen Magnetostratigraphy Northern Calcareous Alps 



We are much indebted to Josef März (Berchtesgaden) for generously supporting the fieldwork and analyses. He discovered the Nesseltalgraben site and was one of the driving forces for initiating this study. The palynological studies were partly financed by the Bavarian Environment Agency (Bayerisches Landesamt für Umwelt) in the framework of the EU-funded project “Informationsoffensive Oberflächennahe Geothermie”. We acknowledge research funding by the Deutsche Forschungsgemeinschaft (DFG) (MA 4235/10-1).


  1. Antoine P, Rousseau DD, Moine O, Kunesch S, Hatté C, Land A, Tissoux H, Zöller L (2009) Rapid and cyclic aeolian deposition during the last glacial in European loess: a high-resolution record from Nussloch, Germany. Quat Sci Rev 28:2955–2973CrossRefGoogle Scholar
  2. Barrett S, Starnberger R, Tjallingii R, Brauer A, Spötl C (2017) The sedimentary history of the inneralpine Inn Valley (Austria): extending the Baumkirchen type section further back in time with new drilling. J Quat Sci 32:63–79CrossRefGoogle Scholar
  3. Bayerisches Landesamt für Umwelt (2013) Gefahrenhinweiskarte Alpen mit Alpenvorland, Landkreis Berchtesgadener Land, Augsburg.
  4. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MunichGoogle Scholar
  5. Boch R, Cheng H, Spötl C, Edwards RL, Wang X, Häuselmann P (2011) NALPS: a precisely dated European climate record 120–60 ka. Clim Past 7:1247–1259CrossRefGoogle Scholar
  6. Boettger T, Novenko EY, Velichko AA, Borisova OK, Kremenetski KV, Knetsch S, Junge FW (2009) Instability of climate and vegetation dynamics in Central and Eastern Europe during the final stage of the last interglacial (Eemian, Mikulino) and early glaciation. Quat Int 207:137–144CrossRefGoogle Scholar
  7. Briant RM, Bateman MD (2009) Luminescence dating indicates radiocarbon underestimation in late Pleistocene fluvial deposits from eastern England. J Quat Sci 24:916–927CrossRefGoogle Scholar
  8. de Vries H, Barendsen GW (1952) A new technique for the measurement of age by radiocarbon. Physica 18:652CrossRefGoogle Scholar
  9. Drescher-Schneider R (2000) Die Vegetations- und Klimaentwicklung im Riß-/Würm-Interglazial und im Früh- und Mittelwürm in der Umgebung von Mondsee. Ergebnisse der pollenanalytischen Untersuchungen. In: van Husen D (ed) Klimaentwicklung im Riß/Würm-Interglazial (Eem) und Frühwürm (Sauerstoffisotopenstufe 6-3) in den Ostalpen. Mitt Komm Quartärforschung 12: 39–92Google Scholar
  10. Enters D, Dörfler W, Zolitschka B (2008) Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. Holocene 18:243–254CrossRefGoogle Scholar
  11. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  12. Fiebig M, Herbst P, Drescher-Schneider R, Lüthgens C, Lomax J, Doppler G (2014) Some remarks about a new last glacial record from the western Salzach foreland glacier basin (Southern Germany). Quat Int 328–329:107–119CrossRefGoogle Scholar
  13. Filzer P (1967) Das Interglazial Riß-Würm vom Pfefferbichl bei Buching im Allgäu. Vorzeit 16:9–24Google Scholar
  14. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–837CrossRefGoogle Scholar
  15. Grootes PM (1977) Thermal diffusion isotopic enrichment and radiocarbon dating beyond 50,000 years BP. Proefschrift Rijksuniversiteit te Groningen, GroningenGoogle Scholar
  16. Grüger E (1979a) Spätriß, Riß/Würm und Frühwürm am Samerberg in Oberbayern — ein vegetationsgeschichtlicher Beitrag zur Gliederung des Jungpleistozäns. Geologica Bavarica 80:5–64Google Scholar
  17. Grüger E (1979b) Die Seeablagerungen vom Samerberg/Obb. und ihre Stellung und ihre Stellung im Jungpleistozän. Eiszeitalter u. Gegenwart 29:23–34Google Scholar
  18. Grüger E, Schreiner A (1993) Riß/Würm- und würmzeitliche Ablagerungen im Wurzacher Becken (Rheingletschergebiet). N Jb Geol Paläont Abh 189:81–117Google Scholar
  19. Heinisch H, Pestal G, Reitner J (2015) Erläuterungen zu Blatt 122 Kitzbühel. Geologische Bundesanstalt, ViennaGoogle Scholar
  20. Heiri O, Koinig K, Spötl C, Barrett S, Brauer A, Drescher-Schneider R, Gaar D, Ivy-Ochs S, Kerschner H, Luetscher M, Moran A, Nicolussi K, Preusser F, Schmidt R, Schoeneich P, Schwörer C, Sprafke T, Terhorst B, Tinner W (2014) Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands. Quat Sci Rev 106:186–205CrossRefGoogle Scholar
  21. Kirschvink J (1980) The least squares lines and plane analysis of palaeomagnetic data. Geophys J R Astr Soc 62:699–718CrossRefGoogle Scholar
  22. Kühnel J (1929) Geologie des Berchtesgadener Salzberges. N Jb Min Geol Paläontol Beil-Bd 59:357–430Google Scholar
  23. Lai ZP, Mischke S, Madsen D (2014) Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. J Paleolimnol 51:197–210CrossRefGoogle Scholar
  24. Lisiecki LE, Raymo ME (2009) Diachronous benthic δ18O responses during late Pleistocene terminations. Palaeoceanography 24:PA3210. doi: 10.1029/2009PA001732 CrossRefGoogle Scholar
  25. Lücke A, Brauer A (2004) Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late glacial climatic changes in varved sediments of Meerfelder Maar (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 211:139–155CrossRefGoogle Scholar
  26. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102CrossRefGoogle Scholar
  27. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  28. Moseley GE, Spötl C, Svensson A, Cheng H, Brandstätter S, Lawrence Edwards R (2014) Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during marine Isotope Stage 3. Geology 42:1043–1046CrossRefGoogle Scholar
  29. Müller U, Pross J, Bibus E (2003) Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quat Res 59:235–245CrossRefGoogle Scholar
  30. Penck A (1882) Die Vergletscherung der deutschen Alpen—Ihre Ursachen, periodische Wiederkehr und ihr Einfluss auf die Bodengestaltung, LeipzigGoogle Scholar
  31. Peschke P (1983) Palynologische Untersuchungen interstadialer Schieferkohlen aus dem schwäbisch-oberbayerischen Alpenvorland. Geologica Bavarica 84:69–99Google Scholar
  32. Pichler H (1963) Geologische Untersuchungen im Gebiet zwischen Roßfeld und Markt Schellenberg im Berchtesgadener Land. Beih Geol Jb 44:129–203Google Scholar
  33. Pini R, Ravazzi C, Reimer PJ (2010) The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quat Sci Rev 29:3115–3137CrossRefGoogle Scholar
  34. Poscher G (1994) Fazies und Genese der pleistozänen Terrassensedimente im Tiroler Inntal und seinen Seitentälern- Teil 1: Der Achenseedamm. Jb Geol Bundesanstalt 137:171–186Google Scholar
  35. Preusser F (2004) Towards a chronology of the Late Pleistocene in the northern Alpine Foreland. Boreas 33:195–210CrossRefGoogle Scholar
  36. Rasmussen SO, Bigler M, Blockley S, Blunier T, Buchardt B, Clausen H, Cvijanovic I, Dahl-Jensen D, Johnsen S, Fischer H, Gkinis V, Guillevic M, Hoek W, Lowe J, Pedro J, Popp T, Seierstad I, Steffensen J, Svensson A, Vallelonga P, Vinther B, Walker M, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  37. Reille M (1998) Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 2. Laboratoire de Botanique historique et Palynologie, Marseille, FranceGoogle Scholar
  38. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  39. Reitner JM (2011) Das Inngletschersystem während des Würm-Glazial. In: Gruber A (ed) Arbeitstagung der Geologischen Bundesanstalt Blatt 88 Achenkirch, Conference proceedings: 79–88Google Scholar
  40. Reitner J, Draxler I (2004) Inner alpine valley fills as archives of climatic and depositional conditions during MIS 5 (Eastern Alps/Tyrol/Austria). Poster, 32nd IGC, Florence, Italy. poster/Poster_IGC_2004r.pdf
  41. Roberts AP (2008) Geomagnetic excursions: knowns and unknowns. Geophys Res Lett 35:L17307. doi: 10.1029/2008GL03471 CrossRefGoogle Scholar
  42. Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:RG1002CrossRefGoogle Scholar
  43. Seierstad IK, Abbott PM, Bigler M, Blunier T, Bourne AJ, Brook E, Buchardt SL, Buizert C, Clausen HB, Cook E, Dahl-Jensen D, Davies SM, Guillevic M, Johnsen SJ, Pedersen DS, Popp TJ, Rasmussen SO, Severinghaus JP, Svensson A, Vinther BM (2014) Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat Sci Rev 106:29–46CrossRefGoogle Scholar
  44. Sirocko F, Seelos K, Schaber K, Rein B, Dreher F, Diehl M, Lehne R, Jäger K, Krbetschek M, Degering D (2005) A late Eemian aridity pulse in central Europe during the last glacial inception. Nature 436:833–836CrossRefGoogle Scholar
  45. Sponagel H, Grottenthaler W, Hartmann K-J, Hartwich R, Janetzko P, Joisten H, Kühn D, Sabel K-J, Traidl R (2005) Bodenkundliche Kartieranleitung. Schweizerbart, StuttgartGoogle Scholar
  46. Spötl C (1989) The Alpine Haselgebirge Formation, Northern Calcareous Alps (Austria): Permo-Scythian evaporites in an alpine thrust system. Sed Geol 65:113–125CrossRefGoogle Scholar
  47. Starnberger R, Drescher-Schneider R, Reitner J, Rodnight H, Reimer P, Spötl C (2013) Late Pleistocene climate change and landscape dynamics in the Eastern Alps: the inner-alpine Unterangerberg record (Austria). Quat Sci Rev 68:17–42CrossRefGoogle Scholar
  48. Stephan H-J (2014) Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas. E&G Quat Sci J 63:3–18Google Scholar
  49. Stephenson A, Snowball IF (2001) A large gyromagnetic effect in greigite. Geophys J Int 145:570–575CrossRefGoogle Scholar
  50. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  51. Stuiver M, Polach HA (1977) Reporting of C-14 data — discussion. Radiocarbon 19:355–363CrossRefGoogle Scholar
  52. van Husen D (1999) Geological processes during the Quaternary. Mitt Österr Geol Ges 92:135–156Google Scholar
  53. van Husen D, Mayr M (2007) The hole of Bad Aussee. an unexpected overdeepened area in NW Steiermark. Austria. Austrian J Earth Sci 100:128–136Google Scholar
  54. Vasiliev I, Iosifidi AG, Khramov AN, Krijgsman W, Kuiper K, Langereis CG, Popov VV, Stoica M, Tomsha VA, Yudin SV (2011) Magnetostratigraphic and radio-isotope dating of upper Miocene-lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeogr Palaeoclimatol Palaeoecol 310:168–175CrossRefGoogle Scholar
  55. Veres D, Lallier-Vergès E, Wohlfarth B, Lacourse T, Kéravis D, Björck S, Preusser F, Andrieu-Ponel V, Ampel L (2008) Climate-driven changes in lake conditions during late MIS 3 and MIS 2: a high-resolution geochemical record from Les Echets, France. Boreas 38:230–243CrossRefGoogle Scholar
  56. Wack M, Gilder S (2012) The SushiBar: an automated system for palaeomagnetic investigations. Geochem Geophys Geosyst 13:1–24CrossRefGoogle Scholar
  57. Welten M (1981) Verdrängung und Vernichtung der anspruchsvollen Gehölze am Beginn der letzten Eiszeit und die Korrelation der Frühwürm-Interstadiale in Mittel- und Nordeuropa. Eiszeit Gegenw 31:187–202Google Scholar
  58. Wirsig C, Zasadni J, Christl M, Akçar N, Ivy-Ochs S (2016) Dating the onset of LGM ice surface lowering in the High Alps. Quat Sci Rev 143:37–50CrossRefGoogle Scholar
  59. Wohlfarth B, Veres D, Ampel L, Lacourse T, Blaauw M, Preusser F, Andrieu-Ponel V, Kéravis D, Lallier-Vergès E, Björck S, Davies SM, de Beaulieu J-L, Risberg J, Hormes A, Kasper HU, Possnert G, Reille M, Thouveny N, Zander A (2008) Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36:407–410CrossRefGoogle Scholar
  60. Zhu J, Lücke A, Wissel H, Müller D, Mayr C, Ohlendorf C, Zolitschka B, Science Team PASADO (2013) The last glacial-Interglacial transition in Patagonia, Argentina: the stable isotope record of bulk sedimentary organic matter from Laguna Potrok Aike. Quat Sci Rev 71:205–218CrossRefGoogle Scholar
  61. Zijderveld J (1967) A. C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in Palaeomagnetism. Elsevier, Amsterdam, pp 254–286Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Christoph Mayr
    • 1
    • 2
    • 3
    Email author
  • Birgit Brandlmeier
    • 2
  • Volker Diersche
    • 4
  • Philipp Stojakowits
    • 5
  • Uwe Kirscher
    • 6
    • 7
  • Renate Matzke-Karasz
    • 2
    • 3
  • Valerian Bachtadse
    • 7
  • Michael Eigler
    • 2
  • Ulrich Haas
    • 8
  • Bernhard Lempe
    • 9
  • Paula J. Reimer
    • 10
  • Christoph Spötl
    • 11
  1. 1.Institut für GeographieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department für Geo- & Umweltwissenschaften, Paläontologie and GeobiologieLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.GeoBio-CenterLudwig-Maximilians-Universität MünchenMunichGermany
  4. 4.Bayerisch GmainGermany
  5. 5.Institut für GeographieUniversität AugsburgAugsburgGermany
  6. 6.Earth Dynamics Research Group, Department of Applied Geology, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR)Curtin UniversityPerthAustralia
  7. 7.Department für Geo- & Umweltwissenschaften, GeophysikLudwig-Maximilians-Universität MünchenMunichGermany
  8. 8.Bayerisches Landesamt für UmweltAugsburgGermany
  9. 9.Lehrstuhl für IngenieurgeologieTechnische Universität MünchenMunichGermany
  10. 10.Centre for Climate, the Environment and Chronology (14CHRONO), School of Natural and Built EnvironmentQueen’s University BelfastBelfastUK
  11. 11.Institut für GeologieLeopold-Franzens Universität InnsbruckInnsbruckAustria

Personalised recommendations