Advertisement

Journal of Paleolimnology

, Volume 58, Issue 2, pp 151–167 | Cite as

Late glacial and early Holocene hydroclimate variability in northwest Iran (Talesh Mountains) inferred from chironomid and pollen analysis

  • Cyril AubertEmail author
  • Elodie Brisset
  • Morteza Djamali
  • Arash Sharifi
  • Philippe Ponel
  • Belinda Gambin
  • Tayebeh Akbari Azirani
  • Frédéric Guibal
  • Hamid Lahijani
  • Abdolmajid Naderi Beni
  • Jacques-Louis de Beaulieu
  • Ali Pourmand
  • Valérie Andrieu-Ponel
  • Alain Thiéry
  • Emmanuel Gandouin
Original paper

Abstract

We reconstructed the paleohydrologic and climatic history of the Lake Neor region, NW Iran, from the end of the late glacial to the middle Holocene (15,500–7500 cal yr BP). Subfossil chironomid and pollen assemblages in a sediment core from a peatland located south of Lake Neor enabled identification of four main hydrologic phases. The period 15,500–12,700 cal yr BP was characterized by a relatively dry climate with an open landscape, suggested by the abundance of Irano-Turanian steppe plants (e.g. Amaranthaceae, Artemisia and Cousinia). Dominance of several shallow-water and semi-terrestrial chironomid taxa (e.g. Pseudosmittia, Smittia/Parasmittia and Paraphaenocladius/Parametriocnemus) during this period is indicative of lower water tables in the wetland. Between 12,700 and 11,300 cal yr BP, chironomid taxa indicate higher wetland water tables, as suggested by the presence of Zavrelia, Chironomus anthracinus/plumosus-type and Micropsectra, which are inhabitants of open-water, lacustrine areas. The open-steppe vegetation remained dominant in the watershed during this time. Increasing wetland moisture could be explained by: (1) cool summers that reduced the evaporation rate; and/or (2) a decrease in duration of the summer dry season. The period 11,300–8700 cal yr BP was characterized by lower wetland moisture, contemporaneous with a delay in the expansion of deciduous forest, suggesting persistent dry climate conditions throughout the beginning of the Holocene, which may have been related to the intensified seasonality of precipitation. Around 8700 cal yr BP, higher wetland water levels, inferred from chironomids, occurred simultaneously with the onset of regional deciduous forest expansion, probably caused by a shortening of the summer dry period. We concluded that chironomids are appropriate paleoecological proxies to investigate global and local hydrologic variability in the Middle East.

Keywords

Climate change Seasonality Paleohydrology Irano-Touranian steppe Lake Neor Middle East 

Notes

Acknowledgements

This project was supported by the Franco-German ANR/DFG project entitled “PALEO-PERSEPOLIS” (ANR-14-CE35-0026-01) and the European ERC project entitled “PERSIA.” The authors thank the former director of the Iranian National Institute for Oceanography and Atmospheric Sciences, Dr Vahid Chegini for his support of our paleoenvironmental studies in NW Iran. Thanks are also due to SJ Brooks, S Engels and an anonymous reviewer for their help, which improved this manuscript.

References

  1. Akhani H, Djamali M, Ghorbanalizadeh A, Ramezani E (2010) Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, paleoecology and conservation. Pak J Bot 42:231–258Google Scholar
  2. Armitage PD, Pinder LC, Cranston P (1995) The Chironomidae: biology and ecology of non-biting midges. Springer, New York, p 572CrossRefGoogle Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  4. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  5. Brodersen KP, Odgaard BV, Vesteraard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267CrossRefGoogle Scholar
  6. Brodin YW (1986) The postglacial history of Lake Flarken, southern Sweden, interpreted from subfossil insect remains. Int Rev Gesamten Hydrobiol 71(371):432Google Scholar
  7. Brooks SJ, Langdon, PG, Heiri O (2007) The Identification and Use of Palaeartic Chironomidae Larvae in Palaeoecology. Technical Guide Nº10. Quaternary Research Association, LondonGoogle Scholar
  8. Brundin L (1949) Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Ein Beitrag zur Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. Report of the Institute of Freshwater Research, Drottningholm 30:1–914Google Scholar
  9. Brundin L (1956) Zur Systematik der Orthocladiinae (Dipt., Chironomidae). Report of the Institute of Freshwater Research, Drottningholm 37:5–185Google Scholar
  10. Çağatay MN, Oğretmen M, Damci E, Stockhecke M, Sancar Ü, Eris KK, Özeren S (2014) Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat Sci Rev 104:97–116CrossRefGoogle Scholar
  11. Chen J, Zhang E, Brooks SJ, Huang X, Wang H, Liu J, Chen F (2014) Relationships between chironomids and water depth in Bosten Lake, Xinjiang, northwest China. J Paleolimnol 51:313–323CrossRefGoogle Scholar
  12. Connor SE, Kvavadze EV (2009) Modelling late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. J Biogeogr 36:529–545CrossRefGoogle Scholar
  13. Cranston PS, Oliver DR, Sather OA (1983) The larvae of the Orthocladiinae (Diptera: Chironomidae) of the Holarctic region. Keys and diagnoses. Entomol Scand Suppl 19:149–291Google Scholar
  14. Delettre Y (1986) La colonisation de biotopes multiples: une alternative à la résistance in situ aux conditions mésologiques défavorables, Cas de Limnophyes minimus (Mg.) Diptère Chironomidé, larves édaphiques des landes armoricaines. Rev Ecol Biol Sol 23:29–38Google Scholar
  15. Djamali M, De Beaulieu J-L, Shah-hosseini M, Andrieu-Ponel V, Ponel P, Amini A, Akhani H, Leroy SAG, Stevens L, Lahijani H, Brewer S (2008) A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat Res 69:413–420CrossRefGoogle Scholar
  16. Djamali M, Akhani H, Andrieu-Ponel V, Braconnot P, Brewer S, Beaulieu J-L, Fleitmann D, Fleury J, Gasse F, Guibal F, Jackson ST, Lézine A-M, Médail F, Ponel P, Roberts N, Stevens L (2010) Indian Summer Monsoon variations could have affected the early-Holocene woodland expansion in the Near East. Holocene 20:813–820CrossRefGoogle Scholar
  17. Djamali M, Akhani H, Khoshravesh R, Andrieu-Ponel V, Ponel P, Brewer S (2011) Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography. Ecol Mediterr 37:91–114Google Scholar
  18. Djamali M, Baumel A, Brewerb S, Jackson ST, Kadereit JW, López-Vinyallonga S, Mehregan I, Shabanian E, Simakova A (2012) Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Rev Palaeobot Palyno 172:10–20CrossRefGoogle Scholar
  19. Doncaster CP, Chavez VA, Viguier C, Wang R, Zhang E, Dong X, Dearing JA, Langdon PG, Dyke JG (2016) Early warming of critical transitions in biodiversity from compositional disorder. Ecology 97:3079–3090CrossRefGoogle Scholar
  20. Eggermont H, Heiri O, Verschuren D (2006) Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quat Sci Rev 25:1966–1994CrossRefGoogle Scholar
  21. Eggermont H, De Deyne P, Verschuren D (2007) Spatial variability of chironomid death assemblages in the surface sediments of a fluctuating tropical lake (Lake Naivasha, Kenya). J Paleolimnol 38:309–328CrossRefGoogle Scholar
  22. Ekrem T and Stur E (2009) Zavrelia hudsoni recognized by Systema Dipterorum working record, Systema Dipterorum in the Catalogue of Life in The Catalogue of Life Partnership: Catalogue of LifeGoogle Scholar
  23. El-Moslimany AP (1987) The late Pleistocene climates of the Lake Zeribar region (Kurdistan, Western Iran) deduced from the ecology and pollen production of nonarboreal vegetation. Vegetatio 72:131–139Google Scholar
  24. Engels S, Cwynar LC (2011) Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665:15–38CrossRefGoogle Scholar
  25. Engels S, Brauer A, Buddelmeijer N, Martin-Puertas C, Rach O, Sachse D, Van Geel B (2016) Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J Quat Sci 31:741–752CrossRefGoogle Scholar
  26. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subarry A, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  27. Gandouin E, Franquet E, Van Vliet-Lanoe B (2005) Chironomids (Diptera) in river floodplains: their status and potential use for palaeoenvironmental reconstruction purposes. Archiv für Hydrobiologie 162:511–534CrossRefGoogle Scholar
  28. Gandouin E, Maasri A, Var Vliet-Lanoë B, Franquet E (2006) Chironomid (Insecta; Diptera) assemblages from a gradient of lotic and lentic waterbodies in river foodplains of France: a methodological tool for palaeoecological applications. J Paleolimnol 35:149–166CrossRefGoogle Scholar
  29. Grimm EC (1987) CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  30. Grimm EC (1990) TILIA and TILIA.GRAPH: PC spreadsheet and graphics software for pollen data. INQUA Commission for the Study of the Holocene Working Group on Data Handling Methods 01/1990. Newsl 4:5–7Google Scholar
  31. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350CrossRefGoogle Scholar
  32. Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration dataset and inference model for chironomid-based summer temperature reconstruction in Europe. Quat Sci Rev 30:3445–3456CrossRefGoogle Scholar
  33. Hofmann W (1984) Stratigraphie subfossiler Cladocera (Crustacea) und Chironomidae (Diptera) in zwei Sedimentprofilen des Meerfelder Maares. Courier Forschungs Institut Senckenberg 65:67–80Google Scholar
  34. Juggins S (2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. NewcastleUniversity, Newcastle upon Tyne, UKGoogle Scholar
  35. Kansanen PH (1985) Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann Zool Fenn 22:57–90Google Scholar
  36. Kaplan G (2013) Palynological analysis of the Late Pleistocene terrace deposits of Lake Van, eastern Turkey: Reconstruction of paleovegetation and paleoclimate. Quat Int 292:168–175CrossRefGoogle Scholar
  37. Karaus U (2004) The ecology of lateral aquatic habitats along rivers corridor. Phd thesis. University of HeidelbergGoogle Scholar
  38. Kazancı N, Gulbabazadeh T, Leroy SAG, Ataselim Z, Gürbülz A (2016) Aeolian control on the deposition of high altitude lacustrine basins in the Middle East: the case of Lake Neor, NW Iran. Quat Internat 408:65–77CrossRefGoogle Scholar
  39. Khalili A (1973) Precipitation patterns in central Alborz. Arch Meteor Geophys B 21:215–232CrossRefGoogle Scholar
  40. Langdon P, Ruiz Z, Wynne S, Sayer C, Davidson T (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545CrossRefGoogle Scholar
  41. Leroy SAG, Tudryn A, Chalié F, López-Merino L, Gasse F (2013) From the Allerød to the mid-Holocene: palynological evidence from the south basin of the Caspian Sea. Quat Sci Rev 78:77–97CrossRefGoogle Scholar
  42. Lotter AF (2004) Multi-proxy climatic reconstructions. In: Mackay AW, Battarbee RW, Birks HJB, Oldfield F (eds) Global change in the Holocene. Arnold Publisher, London, pp 371–383Google Scholar
  43. Madadi A, Moghaddam MHR, Rajaei AH (2005) Study of the geomorphological evolution of the Neor Lake in Ardabil region, NW Iran. Quat J Georg Res 19:92–103 (in Persian)Google Scholar
  44. Massaferro J, Brooks SJ (2002) The response of chironomids to Late Quaternary climate change in the Taitao Peninsula, southern Chile. J Quat Sci 17:101–111CrossRefGoogle Scholar
  45. Messager E, Belmecheri S, von Grafenstein U, Nomade S, Ollivier V, Voinchet P, Puaud S, Courtin-Nomade A, Guillou H, Mgeladze A, Dumoulin JP, Mazuy A, Lordkipanidze D (2013) Late Quaternary record of the vegetation and catchment-related changes from Lake Paravani (Javakheti, South Caucasus). Quat Sci Rev 77:125–140CrossRefGoogle Scholar
  46. Moog O (2002) Fauna Aquatica Austriaca, Edition 2002. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, ViennaGoogle Scholar
  47. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publications, Oxford, p 216Google Scholar
  48. Nazarova L, Herzschuh U, Wetterich S, Kumke T, Pestryakova L (2011) Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia. J Paleolimnol 45:57–71CrossRefGoogle Scholar
  49. Nilsson A (1997) Aquatic Insects of North Europe. A taxonomic Handbook. Volume 2. Odonata-Diptera. Appolo Books Aps, StenstrupGoogle Scholar
  50. Pinder LCV, Reiss F (1983) The larvae of Chironominae (Diptera: Chironomidae) of the Holartic region. Keys and diagnoses. Entomol Scand Suppl 19:293–435Google Scholar
  51. Ponel P, Andrieu-Ponel V, Djamali M, Lahijani H, Leydet M, Mashkour M (2013) Fossil beetles as possible evidence for transhumance during the middle and late Holocene in the high mountains of Talysch (Talesh) in NW Iran? J Environ Archeol 3:201–210CrossRefGoogle Scholar
  52. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille, Marseille, p 584Google Scholar
  54. Reimer PJ, Bard E, Bayliss A, Beck J-W, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards LR, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser K-F, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott E-M, Southon JR, Staff RA, Turney CSM, Van der Plicht J (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years CalBP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  55. Riehl S, Zeidi M, Conard NJ (2013) Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science 341:65–67CrossRefGoogle Scholar
  56. Roberts N (2002) Did prehistoric landscape management retard the post-glacial spread of woodland in Southwest Asia? Antiquity 76:1002–1010CrossRefGoogle Scholar
  57. Roberts N, Jones MD, Benkaddour A, Eastwood WJ, Filippi ML, Frogley MR, Lamb HF, Leng MJ, Reed JM, Stein M, Stevens L, Valero-Garces B, Zanchetta G (2008) Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quaternary Sci Rev 27:2426–2441CrossRefGoogle Scholar
  58. Roberts N, Eastwood WJ, Kuzucuoğlu C, Fiorentino G, Caracuta V (2011) Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. Holocene 21:147–162CrossRefGoogle Scholar
  59. Ruiz Z, Brown AG, Langdon PG (2006) The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. J Archaeol Sci 33:14–33CrossRefGoogle Scholar
  60. Saether OA (1975) Twelve new species of Limnophyes Eaton, with keys to Nearctic males of the genus (Diptera: Chironomidae). Can Entomol 107:1029–1056CrossRefGoogle Scholar
  61. Sæther OA (1979) Chironomid communities as water quality indicators. Holarctic Ecol 2:65–74Google Scholar
  62. Sæther OA, Spies M (2004) Chironomidae. In: de Jong H (ed) Fauna Europaea: Diptera, Nematocera. Fauna Europaea version 1.1, http://faunaeur.org
  63. Sharifi A, Pourmand A, Canuel AE, Ferer-Tyler E, Peterson LC, Aichner B, Feakins SJ, Daryaee T, Djamali M, Naderi Beni A, Lahijani HAK, Swart PK (2015) Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization? Quaternary Sci Rev 123:215–230CrossRefGoogle Scholar
  64. Staubwasser M, Weiss H (2006) Holocene climate and cultural evolution in late prehistoric-early historic West Asia. Quat Res 66:372–387CrossRefGoogle Scholar
  65. Stevens LR, Wright HE Jr, Ito E (2001) Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. Holocene 11:747–755CrossRefGoogle Scholar
  66. Stevens LR, Ito E, Schwalb A, Wright HE Jr (2006) Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran. Quat Res 66:494–500CrossRefGoogle Scholar
  67. Strenzke K (1950) Systematik, Morphologie und Ökologie der terrestrischen Chironomiden. Arch Hydrobiol Suppl 18:207–214Google Scholar
  68. Utala AJ (1986) Paleolimnological assessment of the effects of lake acidification on Chironomidae (Diptera) assemblages in the Adirondack region of New York. Phd thesis. State University of New York College of Environmental Science and Forestry, Syracuse, NYGoogle Scholar
  69. Vallenduuk HJ, Moller Pillot HKM (2002) Key to the larvae of Chironomus in Western Europe. (revised edition, with separated index). SchijndelGoogle Scholar
  70. Van Zeist W, Bottema S (1977) Palynological investigation in Western Iran. Palaeohistoria 19:19–85Google Scholar
  71. Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as quantitative indicators of past climate change. Can J Fish Aquat Sci 48:975–987CrossRefGoogle Scholar
  72. Wasylikowa K, Witkowski A, Walanus A, Hutorowicz A, Alexandrowicz SW, Langer JJ (2006) Palaeolimnology of Lake Zeribar, Iran, and its climatic implications. Quat Res 66:477–493CrossRefGoogle Scholar
  73. Wick L, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13:665–675CrossRefGoogle Scholar
  74. Zeder MA, Hesse B (2000) The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 287:2254–2257CrossRefGoogle Scholar
  75. Zhang E, Jones R, Bedford A, Langdon P, Tang H (2007) A chironomid-based salinity inference model from lakes on the Tibetan Plateau. J Paleolimnol 38:477–491CrossRefGoogle Scholar
  76. Zhang E, Zheng B, Cao Y, Gao G, Shen J (2012) Influence of environmental parameters on the distribution of subfossil chironomids in surface sediments of Bosten Lake (Xinjiang, China). J Limnol 71:291–298CrossRefGoogle Scholar
  77. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World, 4th edn. Clarendon Press, OxfordCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Cyril Aubert
    • 1
    Email author
  • Elodie Brisset
    • 1
  • Morteza Djamali
    • 1
    • 2
  • Arash Sharifi
    • 3
  • Philippe Ponel
    • 1
  • Belinda Gambin
    • 1
    • 4
  • Tayebeh Akbari Azirani
    • 5
  • Frédéric Guibal
    • 1
  • Hamid Lahijani
    • 2
  • Abdolmajid Naderi Beni
    • 2
  • Jacques-Louis de Beaulieu
    • 1
  • Ali Pourmand
    • 3
  • Valérie Andrieu-Ponel
    • 1
  • Alain Thiéry
    • 1
  • Emmanuel Gandouin
    • 1
  1. 1.Aix-Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Technopôle Arbois MéditerranéeAix-En-Provence Cedex 04France
  2. 2.INIOAS: Iranian National Institute for Oceanography and Atmospheric SciencesTehranIran
  3. 3.Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, RSMAS/MGGUniversity of MiamiMiamiUSA
  4. 4.Institute of Earth SystemsUniversity of MaltaMsidaMalta
  5. 5.Department of GeographyShahid Beheshti UniversityTehranIran

Personalised recommendations