Reconstructing recent environmental changes using non-biting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina

  • Fernanda Montes de Oca
  • Luciana Motta
  • María Sofía Plastani
  • Cecilia Laprida
  • Andrea Lami
  • Julieta Massaferro
Original paper

Abstract

Remote lakes of northern Patagonia are ideal sites for examining climate- and non-climate-driven changes in aquatic ecosystems because there is little evidence of human influence and there is no detailed information on recent environmental trends in the region (i.e. the last 200 years). Subfossil chironomids (Diptera: Chironomidae) are useful paleoindicators due to their specific response to numerous environmental factors. Here, we analyze the chironomid subfossil assemblages from two remote lakes located in different environmental settings in Nahuel Huapi National Park of northern Patagonia, Argentina. Chironomids combined with sedimentary pigments (chlorophyll derivatives and total carotenoids) and organic matter provided information on the environmental history of the lakes for the last ca. 200 years. The 210Pb chronology and tephra layers are used to establish the chronology of changes in the chironomid assemblages associated to different environmental factors that impacted the area during the period covered by the study. The deposition of volcanic ash affected the abundance and composition of chironomid assemblage throughout the record of both lakes. However, changing climate conditions and human activities are also responsible for chironomid changes in the last 50 years.

Keywords

Subfossil chironomids High mountain lakes Environmental impact Northern Patagonia 

Notes

Acknowledgements

This study was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT2012-2931) Granted to J. Massaferro. We specially thank Jasmine Saros from University of Maine (United States), for dating analysis and we wish to thank Alex Correa-Metrio for his helping with the age modeling and discussion. We are also grateful to the anonymous reviewers for their constructive contributions.

Supplementary material

10933_2017_9957_MOESM1_ESM.tif (1.5 mb)
Electronic Supplementary Fig. 1 Bayesian age-depht model performed with Bacon software (Blaauw and Christen 2011) for Lake Verde, showing modeled age versus depth plot, gray shaded area represents 95% probability range. The arrow and triangle indicate the position of the ash layer (not included in the model) along the core. (TIFF 1585 kb)
10933_2017_9957_MOESM2_ESM.tif (484 kb)
Electronic Supplementary Fig. 2 Bayesian age-depht model performed with Bacon software (Blaauw and Christen 2011) for Lake Toncek, showing modeled age versus depth plot, gray shaded area represents 95% probability range. Arrows and triangles indicate the position of the ash layers (not included in the model) along the core. (TIFF 484 kb)

References

  1. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 1., Basin analysis, coring and chronological techniquesKluwer, Dordrecht, pp 171–203CrossRefGoogle Scholar
  2. Appleby PG, Olfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8CrossRefGoogle Scholar
  3. Araneda A, Cruces F, Torres L, Bertrand S, Fagel N, Treutler HC, Chirinos L, Barra R, Urrutia R (2007) Changes of sub-fossil chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38ºS), Chile. Rev Chil Hist Nat 80:141–156CrossRefGoogle Scholar
  4. Araneda A, Jana P, Ortega C, Torrejo F, Bertrand S, Vargas P, Fagel N, Alvarez D, Stehr A, Urrutia R (2013) Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires. J Paleolimnol 50:41–56CrossRefGoogle Scholar
  5. Armitage P, Cranston PS, Pinder LCV (1995) The chironomid. The biology and ecology of non-biting midges. Chapman & Hall, LondresGoogle Scholar
  6. Arnaud F, Magand O, Chapron E, Bertrand S, Boës X, Charlet F, Mélières MA (2006) Radionuclide dating (210 Pb, 137 Cs, 241 Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma—Chilean Lake District). Sci Total Environ 366(2):837–850CrossRefGoogle Scholar
  7. Balseiro E, Souza MS, Serra Olabuenaga I, Wolinski L, Bastidas Navarro M, Laspoumaderes C, Modenutti B (2014) Effect of the Puyehue-Cordon Caulle volcanic complex eruption on crustacean zooplankton of Andean lakes. Ecología Austral 24:75–82Google Scholar
  8. Bastidas Navarro M, Balseiro E, Modenutti B (2014) Bacterial community structure in Patagonian Andean Lakes above and below Timberline: from community composition to community function. Microb Ecol 68:528–541CrossRefGoogle Scholar
  9. Battarbee RW, Grytnes JA, Thompson R, Appleby PG, CatalanJ Korhola A, Birks HJB, Heegaard E, Lami A (2002) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28(1):161–179CrossRefGoogle Scholar
  10. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  11. Bertrand S, Castiaux J, Jubigne E (2008) Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40-S). Quat Res 70:343–357CrossRefGoogle Scholar
  12. Bertrand S, Daga R, Bedert R, Fontijn K (2014) Deposition of the 2011–2012 Cordón Caulle tephra (Chile, 40 S) in lake sediments: implications for tephrochronology and volcanology. J Geophys Res Earth Surf 119:2555–2573CrossRefGoogle Scholar
  13. Bianchi MM, Ariztegui D (2009) Vegetation history of the Río Manso Superior catchment area, Northern Patagonia (Argentina), since the last deglaciation. Holocene 22(11):1283–1295CrossRefGoogle Scholar
  14. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  15. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474CrossRefGoogle Scholar
  16. Brodersen KP, Quinlan R (2006) Midges as paleoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012CrossRefGoogle Scholar
  17. Castañeda M, Gonzáles M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21:303–317Google Scholar
  18. Daga R, Ribeiro Guevara S, Sánchez ML, Arribére M (2006) Geochemical characterization of volcanic ashes from recent events in Northern Patagonia Andean Range by INAA. J Radioanal Nucl Chem 270:677–694CrossRefGoogle Scholar
  19. Daga R, Ribeiro Guevara S, Sanchez ML, Arribere MA (2010) Tephrochronology of recent events in the Andean Range (Northern Patagonia) spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park. J Quat Sci 25:1113–1123CrossRefGoogle Scholar
  20. Daga R, Guevara SR, Poire DG, Arribére M (2014) Characterization of tephras dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. J S Am Earth Sci 49:1–14CrossRefGoogle Scholar
  21. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  22. Diaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:37–48CrossRefGoogle Scholar
  23. Eggermont H, Heiri O (2011) The chironomid–temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456CrossRefGoogle Scholar
  24. Fontijn K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84CrossRefGoogle Scholar
  25. Garcia PE, Dieguez MC, Queimaliños C (2015) Landscape integration of North Patagonian mountain lakes: a first approach using characterization of dissolved organic matter. Lakes Reserv Res Manag 20:19–32CrossRefGoogle Scholar
  26. Grimm E (1987) A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  27. Guilizzoni P, Lami A (2001) Paleolimnology:use of algal pigments as indicators. In: Bitton, G (ed) Encyclopedia of environmental microbiology, vol 6, Wiley and Sons, pp 2306–2317Google Scholar
  28. Juggins S (2003) C2 User guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon TyneGoogle Scholar
  29. Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28CrossRefGoogle Scholar
  30. Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545CrossRefGoogle Scholar
  31. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climatic and environmental change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322CrossRefGoogle Scholar
  32. Masiokas MH, Rivera A, Lukman BH, Espizua LE, Villalba R, Delgado S, Aravena JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268CrossRefGoogle Scholar
  33. Massaferro J, Brooks S (2002) Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. J Quat Sci 17:101–111CrossRefGoogle Scholar
  34. Massaferro J, Corley J (1998) Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. Aquat Conserv Mar Freshw Ecosyst 8:315–323CrossRefGoogle Scholar
  35. Massaferro J, Larocque I (2013) Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecol Indic 24:201–210CrossRefGoogle Scholar
  36. Massaferro J, Vandergoes M (2013) Postglacial southern hemisphere. In: Elias SA (ed) The encyclopedia of quaternary science, vol 1. Elsevier, Amsterdam, pp 398–405CrossRefGoogle Scholar
  37. Massaferro J, Ribeiro Guevara S, Rizzo A, Arribere MA (2005) Short term environmental changes in Lake Morenito, (41°S, Patagonia, Argentina) from the analysis of subfossil chironomids. Aquat Conserv Mar Freshw Ecosyst 15:23–30CrossRefGoogle Scholar
  38. Massaferro J, Ashworth A, Brooks S (2008) Quaternary fossil insects from South America. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego., Developments on quaternary sciencesElsevier, Amsterdam, pp 393–409CrossRefGoogle Scholar
  39. Massaferro J, Ortega C, Fuentes R, Araneda A (2013) Guía para la identificación de Tanytarsini subfosiles (Diptera: Chironomidae) de la Patagonia. Ameguiniana 50:319–334CrossRefGoogle Scholar
  40. Massaferro J, Larocque-Tobler I, Brooks S, Vandergoes M, Dieffenbacer-Krall A, Moreno P (2014) Quantifying climate change in Huelmo mire (Chile Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based model. Palaeogeogr Palaeoclimatol Palaeoecol 399:214–224CrossRefGoogle Scholar
  41. Mills K, Schillerff D, Saulnier-Talbot E, Gell P, Anderson N, Arnaud F, Dong X, Jones M, MacGowan S, Massaferro J, Moorhouse H, Ryves D (2016) Deciphering long-ternm records of natural variablity and human impact as recorded in lake sediments: a paleolimnological puzzle. Wiley Interdiscip Rev Water. doi: 10.1002/wat2.1195 Google Scholar
  42. Modenutti BE, Balseiro EG, Elser JJ, Bastidas Navarro M, Cuassolo F, Laspoumaderes C, Souza MS, Díaz Villanueva V (2013) Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol Oceanogr 58:1165–1175CrossRefGoogle Scholar
  43. Muslow S, Piovano E, Cordoba F (2009) Recent aquatic ecosystem response to environmental events revealed from 210 Pb sediment profiles. Mar Pollut Bull 59(4):175–181Google Scholar
  44. Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, Gonzalez-Rouco F, Braddock KL, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Frank D (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4(5):362–367CrossRefGoogle Scholar
  45. Perotti MG, Diéfuez MC, Jara F (2005) Estado del conocimiento de humedales del norte patagónico (Argentina) aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev Chil Hist Nat 78:723–737CrossRefGoogle Scholar
  46. Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the last 13.0 Ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Dordrecht, pp 323–351Google Scholar
  47. Ribeiro Guevara S, Meili M, Rizzo A, Daga R, Arribére M (2010) Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmos Chem Phys 10(7):3443–3453CrossRefGoogle Scholar
  48. Rizzo A, Daga R, Arcagni M, Perez Catán S, Bubach D, Sánchez R, Ribeiro Guevara S, Arribére MA (2010) Concentraciones de metales pesados en distintos compartimentos de lagos andinos de Patagonia Norte. Ecología Austral 20:155–171Google Scholar
  49. Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) Biogeochemistry of lead in the environment. Elsevier Scientific, Amsterdam, pp 285–393Google Scholar
  50. Rogora M, Massaferro J, Marchetto A, Tartari G, Mosello R (2008) The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. J Limnol 67:75–86CrossRefGoogle Scholar
  51. Serra MN, García ML, Maidana N, Villarosa G, Lami A, Massaferro J (2016) Little ice age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi Lake (Patagonia, Argentina). Ameghiniana 53:58–73CrossRefGoogle Scholar
  52. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, MaldenGoogle Scholar
  53. Smol JP, Birks HJB, Last WM (2001) Tracking environmental change using lake sediments, vol 4., Zoological indicatorsKluwer Academic Publishers, DordrechtGoogle Scholar
  54. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206CrossRefGoogle Scholar
  55. Úbeda C, Zagarese H, Diaz M, Pedrozo F (1999) First steps towards the conservation of the microendemic Patagonian frog Atelognathus nitoi. Oryx 33(01):59–66CrossRefGoogle Scholar
  56. Veblen TT, Holz A, Paritsis J, Raffaele E, Kitzberger T, Blackhall M (2011) Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecol 36(8):891–903CrossRefGoogle Scholar
  57. Villalba R (1990) Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34(3):346–360CrossRefGoogle Scholar
  58. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 4., Zoological indicatorsKluwer, Dordrecht, pp 43–66CrossRefGoogle Scholar
  59. Williams N, Rieradevall M, Añon Surez D, Rizzo A, Daga R, Ribeiro Guevara S, Arribere MA (2016) Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quat Res. doi: 10.1016/j.yqres.2016.07.002 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.CONICET, CENAC/APNAdministración de Parques NacionalesBarilocheArgentina
  2. 2.Instituto de Estudios Andinos Don Pablo Groeber UBA-CONICET, Departamento de Ciencias GeológicasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Istituto per lo Studio degli Ecosistemi (ISE-CNR)Verbania-PallanzaItaly

Personalised recommendations