Skip to main content

Advertisement

Log in

Reconstructing recent environmental changes using non-biting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Remote lakes of northern Patagonia are ideal sites for examining climate- and non-climate-driven changes in aquatic ecosystems because there is little evidence of human influence and there is no detailed information on recent environmental trends in the region (i.e. the last 200 years). Subfossil chironomids (Diptera: Chironomidae) are useful paleoindicators due to their specific response to numerous environmental factors. Here, we analyze the chironomid subfossil assemblages from two remote lakes located in different environmental settings in Nahuel Huapi National Park of northern Patagonia, Argentina. Chironomids combined with sedimentary pigments (chlorophyll derivatives and total carotenoids) and organic matter provided information on the environmental history of the lakes for the last ca. 200 years. The 210Pb chronology and tephra layers are used to establish the chronology of changes in the chironomid assemblages associated to different environmental factors that impacted the area during the period covered by the study. The deposition of volcanic ash affected the abundance and composition of chironomid assemblage throughout the record of both lakes. However, changing climate conditions and human activities are also responsible for chironomid changes in the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 1., Basin analysis, coring and chronological techniquesKluwer, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  • Appleby PG, Olfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  Google Scholar 

  • Araneda A, Cruces F, Torres L, Bertrand S, Fagel N, Treutler HC, Chirinos L, Barra R, Urrutia R (2007) Changes of sub-fossil chironomid assemblages associated with volcanic sediment deposition in an Andean lake (38ºS), Chile. Rev Chil Hist Nat 80:141–156

    Article  Google Scholar 

  • Araneda A, Jana P, Ortega C, Torrejo F, Bertrand S, Vargas P, Fagel N, Alvarez D, Stehr A, Urrutia R (2013) Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires. J Paleolimnol 50:41–56

    Article  Google Scholar 

  • Armitage P, Cranston PS, Pinder LCV (1995) The chironomid. The biology and ecology of non-biting midges. Chapman & Hall, Londres

    Google Scholar 

  • Arnaud F, Magand O, Chapron E, Bertrand S, Boës X, Charlet F, Mélières MA (2006) Radionuclide dating (210 Pb, 137 Cs, 241 Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma—Chilean Lake District). Sci Total Environ 366(2):837–850

    Article  Google Scholar 

  • Balseiro E, Souza MS, Serra Olabuenaga I, Wolinski L, Bastidas Navarro M, Laspoumaderes C, Modenutti B (2014) Effect of the Puyehue-Cordon Caulle volcanic complex eruption on crustacean zooplankton of Andean lakes. Ecología Austral 24:75–82

    Google Scholar 

  • Bastidas Navarro M, Balseiro E, Modenutti B (2014) Bacterial community structure in Patagonian Andean Lakes above and below Timberline: from community composition to community function. Microb Ecol 68:528–541

    Article  Google Scholar 

  • Battarbee RW, Grytnes JA, Thompson R, Appleby PG, CatalanJ Korhola A, Birks HJB, Heegaard E, Lami A (2002) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28(1):161–179

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Bertrand S, Castiaux J, Jubigne E (2008) Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40-S). Quat Res 70:343–357

    Article  Google Scholar 

  • Bertrand S, Daga R, Bedert R, Fontijn K (2014) Deposition of the 2011–2012 Cordón Caulle tephra (Chile, 40 S) in lake sediments: implications for tephrochronology and volcanology. J Geophys Res Earth Surf 119:2555–2573

    Article  Google Scholar 

  • Bianchi MM, Ariztegui D (2009) Vegetation history of the Río Manso Superior catchment area, Northern Patagonia (Argentina), since the last deglaciation. Holocene 22(11):1283–1295

    Article  Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, London

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Brodersen KP, Quinlan R (2006) Midges as paleoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012

    Article  Google Scholar 

  • Castañeda M, Gonzáles M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21:303–317

    Google Scholar 

  • Daga R, Ribeiro Guevara S, Sánchez ML, Arribére M (2006) Geochemical characterization of volcanic ashes from recent events in Northern Patagonia Andean Range by INAA. J Radioanal Nucl Chem 270:677–694

    Article  Google Scholar 

  • Daga R, Ribeiro Guevara S, Sanchez ML, Arribere MA (2010) Tephrochronology of recent events in the Andean Range (Northern Patagonia) spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park. J Quat Sci 25:1113–1123

    Article  Google Scholar 

  • Daga R, Guevara SR, Poire DG, Arribére M (2014) Characterization of tephras dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. J S Am Earth Sci 49:1–14

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    Google Scholar 

  • Diaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:37–48

    Article  Google Scholar 

  • Eggermont H, Heiri O (2011) The chironomid–temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Article  Google Scholar 

  • Fontijn K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84

    Article  Google Scholar 

  • Garcia PE, Dieguez MC, Queimaliños C (2015) Landscape integration of North Patagonian mountain lakes: a first approach using characterization of dissolved organic matter. Lakes Reserv Res Manag 20:19–32

    Article  Google Scholar 

  • Grimm E (1987) A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Guilizzoni P, Lami A (2001) Paleolimnology:use of algal pigments as indicators. In: Bitton, G (ed) Encyclopedia of environmental microbiology, vol 6, Wiley and Sons, pp 2306–2317

  • Juggins S (2003) C2 User guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28

    Article  Google Scholar 

  • Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545

    Article  Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climatic and environmental change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Article  Google Scholar 

  • Masiokas MH, Rivera A, Lukman BH, Espizua LE, Villalba R, Delgado S, Aravena JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268

    Article  Google Scholar 

  • Massaferro J, Brooks S (2002) Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. J Quat Sci 17:101–111

    Article  Google Scholar 

  • Massaferro J, Corley J (1998) Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. Aquat Conserv Mar Freshw Ecosyst 8:315–323

    Article  Google Scholar 

  • Massaferro J, Larocque I (2013) Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecol Indic 24:201–210

    Article  Google Scholar 

  • Massaferro J, Vandergoes M (2013) Postglacial southern hemisphere. In: Elias SA (ed) The encyclopedia of quaternary science, vol 1. Elsevier, Amsterdam, pp 398–405

    Chapter  Google Scholar 

  • Massaferro J, Ribeiro Guevara S, Rizzo A, Arribere MA (2005) Short term environmental changes in Lake Morenito, (41°S, Patagonia, Argentina) from the analysis of subfossil chironomids. Aquat Conserv Mar Freshw Ecosyst 15:23–30

    Article  Google Scholar 

  • Massaferro J, Ashworth A, Brooks S (2008) Quaternary fossil insects from South America. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego., Developments on quaternary sciencesElsevier, Amsterdam, pp 393–409

    Chapter  Google Scholar 

  • Massaferro J, Ortega C, Fuentes R, Araneda A (2013) Guía para la identificación de Tanytarsini subfosiles (Diptera: Chironomidae) de la Patagonia. Ameguiniana 50:319–334

    Article  Google Scholar 

  • Massaferro J, Larocque-Tobler I, Brooks S, Vandergoes M, Dieffenbacer-Krall A, Moreno P (2014) Quantifying climate change in Huelmo mire (Chile Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based model. Palaeogeogr Palaeoclimatol Palaeoecol 399:214–224

    Article  Google Scholar 

  • Mills K, Schillerff D, Saulnier-Talbot E, Gell P, Anderson N, Arnaud F, Dong X, Jones M, MacGowan S, Massaferro J, Moorhouse H, Ryves D (2016) Deciphering long-ternm records of natural variablity and human impact as recorded in lake sediments: a paleolimnological puzzle. Wiley Interdiscip Rev Water. doi:10.1002/wat2.1195

    Google Scholar 

  • Modenutti BE, Balseiro EG, Elser JJ, Bastidas Navarro M, Cuassolo F, Laspoumaderes C, Souza MS, Díaz Villanueva V (2013) Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnol Oceanogr 58:1165–1175

    Article  Google Scholar 

  • Muslow S, Piovano E, Cordoba F (2009) Recent aquatic ecosystem response to environmental events revealed from 210 Pb sediment profiles. Mar Pollut Bull 59(4):175–181

    Google Scholar 

  • Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, Gonzalez-Rouco F, Braddock KL, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Frank D (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4(5):362–367

    Article  Google Scholar 

  • Perotti MG, Diéfuez MC, Jara F (2005) Estado del conocimiento de humedales del norte patagónico (Argentina) aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev Chil Hist Nat 78:723–737

    Article  Google Scholar 

  • Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the last 13.0 Ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Springer, Dordrecht, pp 323–351

  • Ribeiro Guevara S, Meili M, Rizzo A, Daga R, Arribére M (2010) Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmos Chem Phys 10(7):3443–3453

    Article  Google Scholar 

  • Rizzo A, Daga R, Arcagni M, Perez Catán S, Bubach D, Sánchez R, Ribeiro Guevara S, Arribére MA (2010) Concentraciones de metales pesados en distintos compartimentos de lagos andinos de Patagonia Norte. Ecología Austral 20:155–171

    Google Scholar 

  • Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) Biogeochemistry of lead in the environment. Elsevier Scientific, Amsterdam, pp 285–393

    Google Scholar 

  • Rogora M, Massaferro J, Marchetto A, Tartari G, Mosello R (2008) The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. J Limnol 67:75–86

    Article  Google Scholar 

  • Serra MN, García ML, Maidana N, Villarosa G, Lami A, Massaferro J (2016) Little ice age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi Lake (Patagonia, Argentina). Ameghiniana 53:58–73

    Article  Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, Malden

    Google Scholar 

  • Smol JP, Birks HJB, Last WM (2001) Tracking environmental change using lake sediments, vol 4., Zoological indicatorsKluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206

    Article  Google Scholar 

  • Úbeda C, Zagarese H, Diaz M, Pedrozo F (1999) First steps towards the conservation of the microendemic Patagonian frog Atelognathus nitoi. Oryx 33(01):59–66

    Article  Google Scholar 

  • Veblen TT, Holz A, Paritsis J, Raffaele E, Kitzberger T, Blackhall M (2011) Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecol 36(8):891–903

    Article  Google Scholar 

  • Villalba R (1990) Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34(3):346–360

    Article  Google Scholar 

  • Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 4., Zoological indicatorsKluwer, Dordrecht, pp 43–66

    Chapter  Google Scholar 

  • Williams N, Rieradevall M, Añon Surez D, Rizzo A, Daga R, Ribeiro Guevara S, Arribere MA (2016) Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quat Res. doi:10.1016/j.yqres.2016.07.002

    Google Scholar 

Download references

Acknowledgements

This study was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT2012-2931) Granted to J. Massaferro. We specially thank Jasmine Saros from University of Maine (United States), for dating analysis and we wish to thank Alex Correa-Metrio for his helping with the age modeling and discussion. We are also grateful to the anonymous reviewers for their constructive contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Montes de Oca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Fig. 1

Bayesian age-depht model performed with Bacon software (Blaauw and Christen 2011) for Lake Verde, showing modeled age versus depth plot, gray shaded area represents 95% probability range. The arrow and triangle indicate the position of the ash layer (not included in the model) along the core. (TIFF 1585 kb)

Electronic Supplementary Fig. 2

Bayesian age-depht model performed with Bacon software (Blaauw and Christen 2011) for Lake Toncek, showing modeled age versus depth plot, gray shaded area represents 95% probability range. Arrows and triangles indicate the position of the ash layers (not included in the model) along the core. (TIFF 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes de Oca, F., Motta, L., Plastani, M.S. et al. Reconstructing recent environmental changes using non-biting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina. J Paleolimnol 59, 175–187 (2018). https://doi.org/10.1007/s10933-017-9957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9957-z

Keywords

Navigation