Journal of Paleolimnology

, Volume 57, Issue 4, pp 307–319 | Cite as

Stable carbon isotopes (δ13C) of total organic carbon and long-chain n-alkanes as proxies for climate and environmental change in a sediment core from Lake Petén-Itzá, Guatemala

  • Jennifer L. Mays
  • Mark Brenner
  • Jason H. CurtisEmail author
  • Kathryn V. Curtis
  • David A. Hodell
  • Alex Correa-Metrio
  • Jaime Escobar
  • Andrea L. Dutton
  • Andrew R. Zimmerman
  • Thomas P. Guilderson
Original Paper


Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.


Compound-specific isotope analysis n-Alkanes Pleistocene paleoclimate Sediment geochemistry Tropical paleolimnology 



We thank the following institutions and individuals in Guatemala who provided assistance to this project: Universidad del Valle, Universidad San Carlos, Ministerio de Ambiente y Recursos Naturales, Consejo Nacional de Areas Protegidas, Instituto de Antropología e Historia, Autoridad Para el Manejo y Desarrollo Sostenible de la Cuenca del Lago Petén-Itzá, Wildlife Conservation Society, Alex Arrivillaga, Cathy Lopez, Margaret Dix, Michael Dix, Margarita Palmieri, David, Rosita, and Kelsey Kuhn, and the staff at La Casa de Don David, Lico Godoy, Tony Ortiz, Franz Sperisen, Luis Toruño, Julian Tesucún, Liseth Perez, Melisa Orozco, Silja Ramirez, Gabriela Alfaro, and Jacobo Blijdenstein. We are grateful to our collaborators from Geoforschungszentrum (Potsdam), Swiss Federal Institute of Technology (Zurich), Université de Genève, and the personnel from DOSECC (Drilling, Observation and Sampling of the Earth’s Continental Crust). Many thanks to Anders Noren, Kristina Brady and Amy Myrbo (LacCore) for assistance with field sampling, core curation and sample preparation. We thank three anonymous reviewers for their thoughtful comments on the original manuscript. This project was funded by grants from the US National Science Foundation (ATM-0502030 and ATM-0502126), the International Continental Scientific Drilling Program, the Swiss Federal Institute of Technology, and the Swiss National Science Foundation. Radiocarbon dating was done at the US DOE Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

Supplementary material

10933_2017_9949_MOESM1_ESM.doc (227 kb)
Supplementary material 1 (DOC 227 kb)


  1. Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244CrossRefGoogle Scholar
  2. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474CrossRefGoogle Scholar
  3. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221CrossRefGoogle Scholar
  4. Bush MB, Correa-Metrio AY, Hodell DA, Brenner M, Anselmetti FS, Ariztegui D, Mueller A, Curtis JH, Grzesik DA, Burton C, Gilli A (2009) Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions: from the last glacial maximum to the Holocene. Developments in paleoenvironmental research, vol 14. Springer, New York, pp 113–128CrossRefGoogle Scholar
  5. Castañeda IS, Werne JP, Johnson TC (2007) Wet and arid phases in the southeast African tropics since the last glacial maximum. Geology 35:823–826CrossRefGoogle Scholar
  6. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345CrossRefGoogle Scholar
  7. Chikaraishi Y, Naraoka H (2003) Compound-specific delta D–delta C-13 analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371CrossRefGoogle Scholar
  8. Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific (delta C-13) analyses of leaf lipids from differing carbon dioxide metabolisms. Org Geochem 21:619–627CrossRefGoogle Scholar
  9. Correa-Metrio A, Bush MB, Hodell DA, Brenner M, Escobar J, Guilderson T (2012) The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands. J Biogeogr 39:497–509CrossRefGoogle Scholar
  10. Curtis JH, Brenner M, Hodell DA, Balser RA, Islebe GA, Hooghiemstra H (1998) A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. J Paleolimnol 19:139–159CrossRefGoogle Scholar
  11. Deevey ES, Brenner M, Flannery MS, Yezdani GH (1980) Lakes Yaxha and Sacnab, Peten, Guatemala: limnology and hydrology. Archiv Hydrobiol Suppl 57:419–460Google Scholar
  12. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335CrossRefGoogle Scholar
  13. Escobar J, Hodell DA, Brenner M, Curtis JH, Gilli A, Mueller AD, Anselmetti FS, Ariztegui D, Grzesik DA, Perez L, Schwalb A, Guilderson TP (2012) A ~43-ka record of paleoenvironmental change in the Central American lowlands inferred from lacustrine ostracod δ18O. Quat Sci Rev 37:92–104CrossRefGoogle Scholar
  14. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  15. Ficken KJ, Li B, Sain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749CrossRefGoogle Scholar
  16. Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883CrossRefGoogle Scholar
  17. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308Google Scholar
  18. Hillesheim MB, Hodell DA, Leyden BW, Brenner M, Curtis JH, Anselmetti FS, Ariztegui D, Buck DG, Guilderson TP, Rosenmeier MF, Schnurrenberger DW (2005) Climate change in lowland Central America during the late Deglacial and early Holocene. J Quat Sci 20:363–376CrossRefGoogle Scholar
  19. Hodell DA, Brenner M, Curtis JH, Guilderson T (2001) Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367–1370CrossRefGoogle Scholar
  20. Hodell DA, Brenner M, Curtis JH, Medina-González R, Ildefonso-Chan Can E, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121CrossRefGoogle Scholar
  21. Hodell DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Gilli A, Grzesik DA, Guilderson TJ, Müller AD, Bush MB, Correa-Metrio A, Escobar J, Kutterolf S (2008) An 85-ka record of climate change in lowland Central America. Quat Sci Rev 27:1152–1165CrossRefGoogle Scholar
  22. Hodell DA, Turchyn AV, Wiseman CJ, Escobar J, Curtis JH, Brenner M, Gilli A, Mueller AD, Anselmetti F, Ariztegui D, Brown ET (2012) Late glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of delta O-18 in biogenic carbonate and gypsum hydration water. Geochim Cosmochim Acta 77:352–368CrossRefGoogle Scholar
  23. Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH (2001) Climate change as the dominant control on glacial-interglacial variations in C-3 and C-4 plant abundance. Science 293:1647–1651CrossRefGoogle Scholar
  24. Hughen KA, Eglinton TI, Xu L, Makou M (2004) Abrupt tropical vegetation response to rapid climate changes. Science 304:1955–1959CrossRefGoogle Scholar
  25. Kutterolf S, Freundt A, Pérez W, Mörz T, Schacht U, Wehrmann H, Schmincke Hu (2008) Pacific off-shore record of plinian arc volcanism in Central America: 1. Along-arc correlations. Geochem Geophys Geosyst 9:Q02S01Google Scholar
  26. Leyden BW (1984) Guatemalan forest synthesis after Pleistocene aridity. Proc Nat Acad Sci USA 81:4856–4859CrossRefGoogle Scholar
  27. Leyden BW, Brenner M, Hodell DA, Curtis JH (1993) Late Pleistocene climate in the Central American lowlands. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical monograph No. 78, American Geophysical Union, Washington, DC, pp 165–178Google Scholar
  28. Leyden BW, Brenner M, Hodell DA, Curtis JH (1994) Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka. Paleogeogr Paleoclimatol Paleoecol 109:193–210CrossRefGoogle Scholar
  29. Lichtfouse E, Derenne S, Mariotti A, Largeau C (1994a) Possible algal origin of long chain n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Org Geochem 22:1023–1027CrossRefGoogle Scholar
  30. Lichtfouse E, Elbisser B, Balesdent J, Mariotii A, Bardoux G (1994b) Isotope and molecular evidence for direct input of maize leaf wax n-alkanes into crop soils. Org Geochem 22:349–351CrossRefGoogle Scholar
  31. Lundell CL (1937) The vegetation of Peten. Carnegie Institution publication No. 478. Carnegie Institution, Washington, DCGoogle Scholar
  32. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  33. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and geological methods, vol 2. Kluwer, Dordrecht, pp 239–270CrossRefGoogle Scholar
  34. Mueller AD, Islebe GA, Hillesheim MB, Grzesik DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Hodell DA, McKenzie JA, Venz-Curtis KA (2009) Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat Res 71:133–141CrossRefGoogle Scholar
  35. Mueller AD, Anselmetti FS, Ariztegui D, Brenner M, Hodell DA, Curtis JH, Escobar J, Gilli A, Grzesik DA, Guilderson TP, Kutterolf S, Plotze M (2010) Late Quaternary palaeoenvironment of northern Guatemala: evidence from deep drill cores and seismic stratigraphy of Lake Petén Itzá. Sedimentology 57:1220–1245Google Scholar
  36. Newell SD (2005) An analysis of compound specific carbon isotopes of lipid biomarkers: a proxy for paleoenvironmental change in the Maya lowlands of Petén, Guatemala. M.S. thesis, University of Florida, GainesvilleGoogle Scholar
  37. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemisty 20:553–567CrossRefGoogle Scholar
  38. Pérez L, Bugja R, Lorenschat J, Brenner M, Curtis J, Hoelsmann P, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661:407–433CrossRefGoogle Scholar
  39. Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 yr cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  40. Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick FA (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352:425–427CrossRefGoogle Scholar
  41. Rose WI, Conway FM, Pullinger CR, Deino A, McIntosh WC (1999) An improved age framework for late Quaternary silicic eruptions in northern Central America. Bull Volcanol 61:106–120CrossRefGoogle Scholar
  42. Rosenmeier MF, Brenner M, Kenney WF, Whitmore TJ, Taylor CM (2004) Recent eutrophication in the southern basin of Lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiologia 511:161–172CrossRefGoogle Scholar
  43. Schefuss E, Raymeyer V, Stuut SBW, Jansen JHF, Damste JSS (2003) Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta 67:1757–1767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jennifer L. Mays
    • 1
    • 9
  • Mark Brenner
    • 2
  • Jason H. Curtis
    • 2
    Email author
  • Kathryn V. Curtis
    • 3
  • David A. Hodell
    • 4
  • Alex Correa-Metrio
    • 5
  • Jaime Escobar
    • 2
    • 6
  • Andrea L. Dutton
    • 1
  • Andrew R. Zimmerman
    • 1
  • Thomas P. Guilderson
    • 7
    • 8
  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Geological Sciences and Land Use, Environmental Change Institute (LUECI)University of FloridaGainesvilleUSA
  3. 3.Department of Soil and Water ScienceUniversity of FloridaGainesvilleUSA
  4. 4.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  5. 5.Instituto de GeologíaUniversidad Nacional Autónoma de México Ciudad UniversitariaMexicoMexico
  6. 6.Universidad del NorteBarranquillaColombia
  7. 7.Center for Accelerator Mass SpectrometryLawrence Livermore National LaboratoryLivermoreUSA
  8. 8.Department of Ocean SciencesUniversity of CaliforniaSanta CruzUSA
  9. 9.Geophysical Laboratory, Deep Carbon ObservatoryCarnegie Institution of WashingtonWashingtonUSA

Personalised recommendations