Last deglaciation and Holocene environmental change at high altitude in the Pyrenees: the geochemical and paleomagnetic record from Marboré Lake (N Spain)

  • B. Oliva-Urcia
  • A. Moreno
  • M. Leunda
  • B. Valero-Garcés
  • P. González-Sampériz
  • G. Gil-Romera
  • M. P. Mata
  • HORDA Group
Original paper

Abstract

Sedimentological, geochemical and magnetic data in a ~ 7-m sequence from Marboré Lake (2612 m asl, central Pyrenees) provide information about environmental variability since the last glacier retreat (14.6 cal ka BP) in high-altitude Pyrenean environments. The sediment sequence is composed of millimeter- to centimeter-thick rhythmites made of finer greyish laminae and coarser-grain, carbonate-bearing laminae arranged in varied patterns throughout the sequence. Finer laminae are interpreted as deposition during periods of predominantly ice-covered conditions, whereas coarser, carbonate-bearing sediments reflect periods of higher runoff. The age model, based on 13 14C dates and a reservoir effect assessed with 210Pb and 137Cs, is coherent with known synchronous vegetation changes across the Pyrenees. Warmer intervals such as GI-1 (14.6–12.8 cal ka BP, Bølling/Allerød period), 10.4–8.2 cal ka BP in the Early Holocene, 7.5–5.2 cal ka BP in the Mid Holocene and the Medieval Climate Anomaly (AD 900–1300), are characterized by peaks in productivity and higher carbonate preservation. Deposition during colder periods such as GS-1 (12.8–11.7 cal ka BP), the Neoglacial (ca. 5.2–3.5 cal ka BP) and the Little Ice Age (last 400 years) show an increase in finer laminae. The presence of magnetite throughout the whole section suggests that Marboré Lake maintained predominantly oxic conditions since its formation. Changes in magnetic properties and the increase in magnetite from 3.5 cal ka BP to present, however, indicate a more oxic environment at the lake bottom during the last few millennia. The occurrence of Pb concentration peaks in sediments of Roman and modern age demonstrates the global distribution of heavy metal deposition, even into high-mountain lakes.

Keywords

Lake record Mountain environments Magnetic properties Geochemistry Sedimentology 

Notes

Acknowledgements

Funding for this research was provided by the Spanish National Parks Agency through the projects HORDA (Ref 83/2009), CULPA (Ref 998/2013), CLAM (Ref 623/2012), and by the Spanish Inter-Ministry Commission of Science and Technology through the DINAMO 2 (Ref CGL2012-33063) and DINAMO 3 (Ref CGL2015-69160-R) projects and by the European Commission (EFA056/15 REPLIM). María Leunda acknowledges FPI Grant BES-2013-063753. We are indebted to the HORDA group for the field expedition in 2011 and to Miguel Sevilla for the design of Fig. 1. The director and staff of the Parque Nacional de Ordesa y Monte Perdido (PNOMP) are also acknowledged for their help with the sampling campaigns. Two anonymous reviewers and the editor in Chief M Brenner are acknowledged for their comments and suggestions. HORDA GROUP: A. Adsuar, J. Aranbarri, F. Barreiro, M. Bartolomé, B. Bueno, E. García-Prieto, B. García, J. C. Larrasoaña, J. M. Parés, A. Pérez, M. Rico, A. Salabarnada, Á. Salazar, M. Sevilla-Callejo, P. Tarrats.

Supplementary material

10933_2017_13_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1799 kb)

References

  1. Aguilar C, Nealson KH (1998) Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese. J Gt Lakes Res 24:93–104CrossRefGoogle Scholar
  2. Ao H, Deng C, Dekkers MJ, Liu Q (2010) Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet Sci Lett 292:191–200.  https://doi.org/10.1016/j.epsl.2010.01.035CrossRefGoogle Scholar
  3. Aranbarri J, González-Sampériz P, Valero-Garcés B, Moreno A, Gil-Romera G, Sevilla-Callejo M, García-Prieto E, Di Rita F, Mata MP, Morellón M, Magri D, Rodríguez-Lázaro J, Carrión JS (2014) Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of south-western Europe. Glob Planet Chang 114:50–65CrossRefGoogle Scholar
  4. Bartolomé M, Moreno A, Sancho C, Stoll HM, Cacho I, Spötl C, Belmonte Á, Edwards RL, Cheng H, Hellstrom JC (2015) Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1. Proc Nat Acad Sci 112:6568–6572.  https://doi.org/10.1073/pnas.1503990112CrossRefGoogle Scholar
  5. Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518.  https://doi.org/10.1016/j.quageo.2010.01.002CrossRefGoogle Scholar
  6. Blass A, Bigler C, Grosjean M, Sturm M (2007) Decadal-scale autumn temperature reconstruction back to AD 1580 inferred from the varved sediments of Lake Silvaplana (southeastern Swiss Alps). Quat Res 68:184–195CrossRefGoogle Scholar
  7. Borruel-Abadía V, Gómez-Paccard M, Larrasoaña JC, Rico M, Valero-Garcés B, Moreno A, Jambrina-Enríquez M, Soto R (2015) Late Pleistocene to Holocene palaeoenvironmental variability in the north-west Spanish mountains: insights from a source-to-sink environmental magnetic study of Lake Sanabria. J Quat Sci 30:222–234.  https://doi.org/10.1002/jqs.2773CrossRefGoogle Scholar
  8. Camarero L (2017) Atmospheric chemical loadings in the high mountain: current forcing and legacy pollution. In: High mountain conservation in a changing world. Springer, Cham, pp 325–341Google Scholar
  9. Camarero L, Masqué P, Devos W, Ani-Ragolta I, Catalan J, Moor HC, Pla S, Sanchez-Cabeza JA (1998) Historical variations in lead fluxes in the Pyrenees (Northeast Spain) from a dated lake sediment core. Water Air Soil Pollut 105:439–449.  https://doi.org/10.1023/A:1005005625972CrossRefGoogle Scholar
  10. Carrera G, Fernández P, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Atmospherc deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588CrossRefGoogle Scholar
  11. Catalan J, Pla S, Rieradevall M, Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes JA, Agustí-Panareda A, Thompson R (2002) Lake Redó ecosystem response to an increasing warming the Pyrenees during the twentieth century. J Paleolimnol 28:129–145CrossRefGoogle Scholar
  12. Catalan J, Camarero L, Quijano DD, de Felip M, Pla S, Ventura M, Buchaca T, Bartumeus F, de Mendoza G, Miró A, Casamayor EO, Sánchez JMM, Bacardit M, Altuna M, Bartrons M (2006) High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25:551–584Google Scholar
  13. Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson NJ, Kopáček J, Stuchlík E, Schmidt R, Koinig KA, Camarero L, Flower RJ, Heiri O, Kamenik C, Korhola A, Leavitt PR, Psenner R, Renberg I (2013) Global change revealed by palaeolimnological records from remote lakes: a review. J Paleolimnol 49:513–535.  https://doi.org/10.1007/s10933-013-9681-2CrossRefGoogle Scholar
  14. Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J Appl Crystallogr 7:519–525CrossRefGoogle Scholar
  15. Coto B, Martos C, Peña JL, Rodríguez R, Pastor G (2012) Effects in the solubility of CaCO3: experimental study and model description. Fluid Phase Equilib 324:1–7CrossRefGoogle Scholar
  16. Delmas M, Gunnell Y, Braucher R, Calvet M, Bourlès D (2008) Exposure age chronology of the last glaciation in the eastern Pyrenees. Quat Res 69(2):231–241CrossRefGoogle Scholar
  17. Davis PT, Menounos B, Osborn G (2009) Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective. Quat Sci Rev 28:2021–2033.  https://doi.org/10.1016/j.quascirev.2009.05.020CrossRefGoogle Scholar
  18. Dunlop DJ (2002) Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3):EPM 5-1–EPM 5-15.  https://doi.org/10.1029/2001jb000486Google Scholar
  19. Garcés-Pastor S, Cañellas-Boltà N, Pèlachs A, Soriano J-M, Perez-Obiol R, Pérez-Haase A, Calero M-A, Andreu O, Escolà N, Vegas-Vilarrúbia T (2017) Environmental history and vegetation dynamics in response to climate variations and human pressure during the Holocene in Bassa Nera, Central Pyrenees. Palaeogeogr Palaeoclimatol Palaeoecol 479:48–60.  https://doi.org/10.1016/j.palaeo.2017.04.016CrossRefGoogle Scholar
  20. García-Alix A, Delgado Huertas A, Martín Suárez E, Freudenthal M (2013) Environmental conditions vs. landscape. Assessment of the factors that influence small mammal fauna distribution in Southern Iberia during the latest Messinian by mean of stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 386:492–500.  https://doi.org/10.1016/j.palaeo.2013.06.017CrossRefGoogle Scholar
  21. García-Ruiz JM, Martí-Bono C, Peña-Monné JL, Sancho C, Rhodes EJ, Valero-Garcés B, González-Sampériz P, Moreno A (2013) Glacial and fluvial deposits in the aragón valley, central-western pyrenees: chronology of the pyrenean late pleistocene glaciers. Geogr Ann Ser A Phys Geogr 95:15–32.  https://doi.org/10.1111/j.1468-0459.2012.00478.xCrossRefGoogle Scholar
  22. García-Ruiz JM, Palacios D, de Andrés N, Valero-Garcés BL, López-Moreno JI, Sanjuán Y (2014) Holocene and “little ice age” glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. Holocene 24:1439–1452.  https://doi.org/10.1177/0959683614544053CrossRefGoogle Scholar
  23. García-Ruiz JM, Palacios D, González-Sampériz P, de Andrés N, Moreno A, Valero-Garcés B, Gómez-Villar A (2016) Mountain glacier evolution in the Iberian Peninsula during the Younger Dryas. Quat Sci Rev 138:16–30.  https://doi.org/10.1016/j.quascirev.2016.02.022CrossRefGoogle Scholar
  24. Gil-Romera G, González-Sampériz P, Lasheras-Álvarez L, Sevilla-Callejo M, Moreno A, Valero-Garcés B, López-Merino L, Carrión JS, Pérez Sanz A, Aranbarri J, García-Prieto Fronce E (2014) Biomass-modulated fire dynamics during the last glacial–interglacial transition at the Central Pyrenees (Spain). Palaeogeogr Palaeoclimatol Palaeoecol 402:113–124.  https://doi.org/10.1016/j.palaeo.2014.03.015CrossRefGoogle Scholar
  25. González-Sampériz P, Valero-Garcés BL, Moreno A, Jalut G, García-Ruiz JM, Martí-Bono C, Delgado-Huertas A, Navas A, Otto T, Dedoubat JJ (2006) Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quat Res 66:38–52.  https://doi.org/10.1016/j.yqres.2006.02.004CrossRefGoogle Scholar
  26. González-Sampériz P, Aranbarri J, Pérez-Sanz A, Gil-Romera G, Moreno A, Leunda M, Sevilla-Callejo M, Corella JP, Morellón M, Oliva B, Valero-Garcés B (2017) Environmental and climate change in the southern Central Pyrenees since the last glacial maximum: a view from the lake records. CATENA 149(Part 3):668–688.  https://doi.org/10.1016/j.catena.2016.07.041 (Geoecology in Mediterranean mountain areas. Tribute to Professor José María García Ruiz)CrossRefGoogle Scholar
  27. Grimalt JO, van Drooge BL, Ribes A, Fernández P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24.  https://doi.org/10.1016/j.envpol.2004.02.024CrossRefGoogle Scholar
  28. Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by greek and roman civilizations. Science 265:1841–1843.  https://doi.org/10.1126/science.265.5180.1841CrossRefGoogle Scholar
  29. Hu Y-B, Wolf-Gladrow DA, Dieckman GS, Völker C, Nehrke G (2014) A laboratory study of ikaite (CaCO3 6 H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration. Mar Chem 162:10–18.  https://doi.org/10.1016/j.marchem.2014.02.003CrossRefGoogle Scholar
  30. Hunt CP, Moskowitz BM, Banerjee SK (1995) Magnetic properties of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: A Handbook of physical Constants. AGU Reference Shelf 3. American Geophysical Union, Washington, pp 189–204CrossRefGoogle Scholar
  31. Irabien MJ, Cearret A, Urteaga M (2012) Historical signature of Roman mining activities in the Bidasoa estuary (Basque Country, northern Spain): an integrated micropalaeontological, geochemical and archaeological approach. J Archaeol Sci 39:2361–2370.  https://doi.org/10.1016/j.jas.2012.02.023CrossRefGoogle Scholar
  32. Jalut G, Amat AE, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeogr Palaeoclimatol Palaeoecol 160:255–290CrossRefGoogle Scholar
  33. King JW, Channell JET (1991) Sedimentary magnetism, environmental magnestism and magnestostratigraphy. Rev Geophys 29:358–370CrossRefGoogle Scholar
  34. Koining KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  35. Lanci L, Hirt AM, Lowrie W, Lotter AF, Lemcke G, Sturm M (1999) Mineral-magnetic record of Late Quaternary climatic changes in a high Alpine lake. Earth Planet Sci Lett 170:49–59.  https://doi.org/10.1016/S0012-821X(99)00098-9CrossRefGoogle Scholar
  36. Lanci L, Hirt AM, Lotter AF, Sturm M (2001) A record of Holocene climate in the mineral magnetic record of Alpine lakes: Sägistalsee and Hinterburgsee. Earth Planet Sci Lett 188:29–44.  https://doi.org/10.1016/S0012-821X(01)00301-6CrossRefGoogle Scholar
  37. Larrasoaña JC, Ortuño M, Birks HH, Valero-Garcés B, Parés JM, Copons R, Camarero L, Bordonau J (2010) Palaeoenvironmental and palaeoseismic implications of a 3700-year sedimentary record from proglacial Lake Barrancs (Maladeta Massif, Central Pyrenees, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 294:83–93CrossRefGoogle Scholar
  38. Leonard EM, Reasoner MA (1999) A continuous Holocene glacial record inferred from proglacial lake sediments in Banff National Park, Alberta, Canada. Quat Res 51:1–13CrossRefGoogle Scholar
  39. Leunda M, González-Sampériz P, Gil-Romera G, Aranbarri J, Moreno A, Oliva-Urcia B, Sevilla-Callejo M, Valero-Garcés B (2017) The Late-Glacial and Holocene Marboré Lake sequence (2612 m asl, Central Pyrenees, Spain): testing high altitude sites sensitivity to millennial scale vegetation and climate variability. Glob Planet Chang 157:214–231CrossRefGoogle Scholar
  40. Lillios KT, Blanco-González A, Drake BL, López-Sáez JA (2016) Mid-late Holocene climate, demography, and cultural dynamics in Iberia: a multi-proxy approach. Quat Sci Rev 135:138–153.  https://doi.org/10.1016/j.quascirev.2016.01.011CrossRefGoogle Scholar
  41. Liu Q, Hu P, Torrent J, Barrón V, Zhao X, Jiang Z, Su Y (2010) Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: indications for pedogenesis. Palaeogeogr Palaeoclimatol Palaeoecol 293:144–156.  https://doi.org/10.1016/j.palaeo.2010.05.008CrossRefGoogle Scholar
  42. López-Moreno JI, Revuelto J, Rico I, Chueca-Cía J, Julián A, Serreta A, Serrano E, Vicente-Serrano SM, Azorín-Molina C, Alonso-González E, García-Ruiz JM (2015) Accelerated wastage of the Monte Perdido Glacier in the Spanish Pyrenees during recent stationary climatic conditions. Cryosphere Discuss 9:5021–5051.  https://doi.org/10.5194/tcd-9-5021-2015CrossRefGoogle Scholar
  43. Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27:6–17.  https://doi.org/10.1016/j.quascirev.2007.09.016CrossRefGoogle Scholar
  44. Magny M, Combourieu-Nebout N, de Beaulieu JL, Bout-Roumazeilles V, Colombaroli D, Desprat S, Francke A, Joannin S, Ort E, Peyron O, Revel M, Sadori L, Siani G, Sicre MA, Samartin S, Simonneau A, Tinner W, Vannière B, Wagner B, Zanchetta G, Anselmetti F, Brugiapaglia E, Chapron E, Debret M, Desmet M, Didier J, Essallami L, Galop D, Gilli A, Haas JN, Kallel N, Millet L, Stock A, Turon JL, Wirth S (2013) North–south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim Past 9:2043–2071.  https://doi.org/10.5194/cp-9-2043-2013CrossRefGoogle Scholar
  45. Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 4:109–128Google Scholar
  46. Martínez Cortizas A, López-Merino L, Bindler R, Mighall T, Kylander M (2013) Atmospheric Pb pollution in N Iberia during the late Iron Age/Roman times reconstructed using the high-resolution record of La Molina mire (Asturias, Spain). J Paleolimnol 50:71–86.  https://doi.org/10.1007/s10933-013-9705-yCrossRefGoogle Scholar
  47. Martín-Puertas C, Jiménez-Espejo F, Martínez-Ruiz F, Nieto-Moreno V, Rodrigo M, Mata MP, Valero-Garcés BL (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6:807–816.  https://doi.org/10.5194/cp-6-807-2010CrossRefGoogle Scholar
  48. Mata MP, Moreno A, Oliva-Urcia B, Valero-Garcés BL, Rico T (2013) Registro histórico de la contaminación atmosférica por Pb en el Lago de Marboré (P.N. de Ordesa y Monte Perdido). Macla 17:71–72Google Scholar
  49. Mattauer M, Séguret M (1971) Les relations entre la chaine des Pyrénées et le golfe de Gascogne. In: Histoire structurale du Golfe de Gascogne, pp 1–24Google Scholar
  50. Mayewski PA, Rohling EJ, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, Van Kreveld SA, Holmgren CA, Lee-Thorp JA, Rosqvist G, Rack F, Staubwasser M, Schneider R, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  51. Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclimatol Palaeoecol 315–316:86–99.  https://doi.org/10.1016/j.palaeo.2011.11.014CrossRefGoogle Scholar
  52. Miras Y, Ejarque A, Riera S, Palet JM, Orengo H, Euba I (2007) Dynamique holocène de la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancien, d’après l’analyse pollinique de la tourbière de Bosc dels Estanyons (2180 m, Vall del Madriu, Andorre). CR Palevol 6:291–300.  https://doi.org/10.1016/j.crpv.2007.02.005CrossRefGoogle Scholar
  53. Montserrat J (1992) Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. Instituto Pirenaico de Ecología, ZaragozaGoogle Scholar
  54. Morellón M, Valero-Garcés B, Moreno A, González-Sampériz P, Mata P, Romero O, Maestro M, Navas A (2008) Holocene palaeohydrology and climate variability in northeastern Spain: the sedimentary record of Lake Estanya (Pre-Pyrenean range). Quat Int 181:15–31.  https://doi.org/10.1016/j.quaint.2007.02.021CrossRefGoogle Scholar
  55. Morellón M, Valero-Garcés B, Vegas-Vilarrúbia T, González-Sampériz P, Romero Ó, Delgado-Huertas A, Mata P, Moreno A, Rico M, Corella JP (2009) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quat Sci Rev 28:2582–2599CrossRefGoogle Scholar
  56. Morellón M, Aranbarri J, Moreno A, González-Sampériz P, Valero-Garces BL (2018) Early Holocene humidity patterns in the Iberian Peninsula reconstructed from lake and speleothem records. Quat Sci Rev 181:1–18CrossRefGoogle Scholar
  57. Moreno A, López-Merino L, Leira M, Marco-Barba J, González-Sampériz P, Valero-Garcés B, López-Sáez J, Santos L, Mata P, Ito E (2011) Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J Paleolimnol 46:327–349.  https://doi.org/10.1007/s10933-009-9387-7CrossRefGoogle Scholar
  58. Moreno A, González-Sampériz P, Morellón M, Valero-Garcés BL, Fletcher WJ (2012) Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quat Sci Rev 36:139–153.  https://doi.org/10.1016/j.quascirev.2010.06.031CrossRefGoogle Scholar
  59. Moreno A, Pérez-Mejías C, Bartolomé M, Sancho C, Cacho I, Stoll H, Delgado-Huertas A, Hellstrom J, Edwards RL, Cheng H (2017) New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia. Quat Res.  https://doi.org/10.1017/qua.2017.39Google Scholar
  60. Naeher S, Gilli A, North RP, Hamann Y, Schubert CJ (2013) Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem Geol 352:125–133.  https://doi.org/10.1016/j.chemgeo.2013.06.006CrossRefGoogle Scholar
  61. Nicolás-Martínez PM (1981) Morfología del circo de Tucarroya (Macizo de Monte Perdido, Pirineo Aragonés). Cuad Investig Geogr 7:51–80.  https://doi.org/10.18172/cig.884CrossRefGoogle Scholar
  62. Ohlendorf C, Sturm M (2001) Precipitation and dissolution of calcite in a Swiss high alpine lake. Arct Antarct Alp Res 33:410–417CrossRefGoogle Scholar
  63. Oldfield F (1991) Environmental magnetism—a personal perspective. Quat Sci Rev 10:73–85.  https://doi.org/10.1016/0277-3791(91)90031-OCrossRefGoogle Scholar
  64. Oliva M, Serrano E, Gómez-Ortiz A, González-Amuchastegui MJ, Nieuwendam A, Palacios D, Pérez-Alberti A, Pellitero-Ondicol R, Ruiz-Fernández J, Valcárcel M, Vieira G, Antoniades D (2016) Spatial and temporal variability of periglaciation of the Iberian Peninsula. Quat Sci Rev 137:176–199.  https://doi.org/10.1016/j.quascirev.2016.02.017CrossRefGoogle Scholar
  65. Oliva-Urcia B, Pueyo EL (2007) Rotational basement kinematics deduced from remagnetized cover rocks (Internal Sierras, southwestern Pyrenees). Tectonics.  https://doi.org/10.1029/2006TC001955.10.1029/2006TC001955Google Scholar
  66. Oliva-Urcia B, Pueyo EL, Larrasoaña JC (2008) Magnetic reorientation induced by pressure solution: a potential mechanism for orogenic-scale remagnetizations. Earth Planet Sci Lett 265:525–534.  https://doi.org/10.1016/j.epsl.2007.10.032CrossRefGoogle Scholar
  67. Oliva-Urcia B, Larrasoaña JC, Pueyo EL, Gil A, Mata P, Parés JM, Schleicher AM, Pueyo O (2009) Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). J Struct Geol 31:163–176.  https://doi.org/10.1016/j.jsg.2008.11.002CrossRefGoogle Scholar
  68. Opdyke ND, Channell J (1996) Magnetic stratigraphy, International geophysics series. Academic Press, San Diego, p 346Google Scholar
  69. Ortega B, Caballero M, Lozano S, Vilaclara G, Rodríguez A (2006) Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East-Central Mexico. Earth Planet Sci Lett 250:444–458.  https://doi.org/10.1016/j.epsl.2006.08.020CrossRefGoogle Scholar
  70. Palacios D, Gómez-Ortiz A, Andrés N, Vázquez-Selem L, Salvador-Franch F, Oliva M (2015) Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya mountains, Southeastern Pyrenees. Geomorphology 231:116–129CrossRefGoogle Scholar
  71. Pérez-Sanz A, González-Sampériz P, Moreno A, Valero-Garcés B, Gil-Romera G, Rieradevall M, Tarrats P, Lasheras-Álvarez L, Morellón M, Belmonte A, Sancho C, Sevilla-Callejo M, Navas A (2013) Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quat Sci Rev 73:149–169.  https://doi.org/10.1016/j.quascirev.2013.05.010CrossRefGoogle Scholar
  72. Peters C, Dekkers MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth Parts A/B/C 28:659–667.  https://doi.org/10.1016/S1474-7065(03)00120-7CrossRefGoogle Scholar
  73. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278CrossRefGoogle Scholar
  74. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  75. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  76. Roberts AP (2015) Magnetic mineral diagenesis. Earth Sci Rev 151:1–47.  https://doi.org/10.1016/j.earscirev.2015.09.010CrossRefGoogle Scholar
  77. Salazar A, Mata MP, Rico M, Valero-Garcés Oliva-Urcia B, Rubio FM (2013) El paleolago de La Larri (Valle de Pineta, Pirineos). Cuad Inves Geogr 39:97–116Google Scholar
  78. Sánchez-España J, Mata P, Vegas J, Morellón M, Rodríguez JA, SalazarÁ, Yusta I (2018) Limnochemistry of the remote, high mountain Lake Marboré (Ordesa and Monte Perdido National Park, Central Pyrenees): Stratification dynamics and trace metal anomalies. Limnetica (in press)Google Scholar
  79. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154CrossRefGoogle Scholar
  80. Souquet P (1967) Le Crétacé supérieur sudpyrénéen en Catalogne, Aragon et Navarre. Thèse d’Etat, Univ. de Toulouse, p 529Google Scholar
  81. Verosub KL (1995) Environmental magnetism: past, present and future. J Geophys Res 100:2175–2192CrossRefGoogle Scholar
  82. Wang H, Liu H, Zhu J, Yin Y (2010) Holocene environmental changes as recorded by mineral magnetism of sediments from Anguli-nuur Lake, southeastern Inner Mongolia Plateau, China. Palaeogeogr Palaeoclimatol Palaeoecol 285:30–49.  https://doi.org/10.1016/j.palaeo.2009.10.020CrossRefGoogle Scholar
  83. Zhang J, Ma X, Qiang M, Huang X, Li S, Guo X, Henderson ACG, Holmes JA, Chen F (2016) Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China. Quat Sci Rev 144:66–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Geología y GeoquímicaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Procesos Geoambientales y Cambio GlobalInstituto Pirenaico de Ecología–CSICZaragozaSpain
  3. 3.Department of Geography and Earth SciencesAberystwyth UniversityAberyswythUK
  4. 4.Departamento de Investigación en Recursos GeológicosInstituto Geológico y Minero de EspañaMadridSpain

Personalised recommendations