Natural and anthropogenic forcing of Holocene lake ecosystem development at Lake Uddelermeer (The Netherlands)

  • Stefan Engels
  • Rogier van Oostrom
  • Chiara Cherli
  • Jennifer A. J. Dungait
  • Boris Jansen
  • J. M. van Aken
  • Bas van Geel
  • Petra M. Visser
Original paper

Abstract

Lake Uddelermeer (The Netherlands) is characterized by turbid conditions and annual blooms of toxic cyanobacteria, which are supposed to be the result of increased agricultural activity in the twentieth century AD. We applied a combination of classic palaeoecological proxies and novel geochemical proxies to the Holocene sediment record of Lake Uddelermeer (The Netherlands) in order to reconstruct the natural variability of the lake ecosystem and to identify the drivers of the change to the turbid conditions that currently characterize this lake. We show that the lake ecosystem was characterized by a mix of aquatic macrophytes and abundant phytoplankton between 11,500 and 6000 cal year BP. A transition to a lake ecosystem with clear-water conditions and relatively high abundances of ‘isoetids’ coincides with the first signs of human impact on the landscape around Lake Uddelermeer during the Early Neolithic (ca. 6000 cal year BP). An abrupt and dramatic ecosystem shift can be seen at ca. 1030 cal year BP when increases in the abundance of algal microfossils and concentrations of sedimentary pigments indicate a transition to a turbid phytoplankton-dominated state. Finally, a strong increase in concentrations of plant and faecal biomarkers is observed around 1950 AD. Canonical Correspondence Analysis suggests that reconstructed lake ecosystem changes are best explained by environmental drivers that show long-term gradual changes (sediment age, water depth). These combined results document the long-term anthropogenic impact on the ecosystem of Lake Uddelermeer and provide evidence for pre-Industrial Era signs of eutrophication.

Keywords

Palaeoecology Pollution history Ecosystem change Faecal biomarkers Sedimentary pigments Holocene 

Notes

Acknowledgements

Tieke Poelen and Kroondomein het Loo are thanked for granting permission to access the site. We thank Nelleke van Asch, Erik J de Boer, Remko Engels, Wim Z Hoek, Andy F Lotter, Julia Sassi and Hessel Woolderink for help during fieldwork; Annemarie Philip for preparing pollen samples; Leo Hoitinga, Joke Westerveld and Pieter Slot for laboratory assistance; Christopher Bronk Ramsey, Johannes van der Plicht and Christine S Lane for help with the chronological work. The research of SE is financed by the Netherlands Organisation for Scientific Research (NWO, Project 863.11.009). The contribution of JAJD represents part of the BBSRC funded programmes at Rothamsted Research on Sustainable Soil Function, and Bioenergy and Climate Change. We thank the reviewers and editors for their helpful comments on a previous version of the manuscript. In loving memory of Sjoerd Bohncke, our friend and colleague who is dearly missed.

References

  1. Battarbee R (1999) The importance of palaeolimnology to lake restoration. Hydrobiologia 395(396):149–159CrossRefGoogle Scholar
  2. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  3. Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138CrossRefGoogle Scholar
  4. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  6. Birks HJB, Lotter AF (1994) The impact of the Laacher See Volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. J Paleolimnol 11:313–322CrossRefGoogle Scholar
  7. Bjerring R, Bradshaw EG, Amsnick SL, Johansson LS, Odgaard V, Nielsen AB, Jeppsen E (2008) Inferring recent changes in the ecological state of 21 Danish candidate reference lakes (EU Water Framework Directive) using palaeolimnology. J Appl Ecol 45:1566–1575CrossRefGoogle Scholar
  8. Bohncke SJP (1999) Palynologisch verslag betreffende de archiefwaarde van de bovenste twee meter sediment van het Uddelermeer. Vrije Universiteit Amsterdam, AmsterdamGoogle Scholar
  9. Bohncke SJP, Wijmstra L, van der Woude J, Sohl H (1988) The Late-Glacial infill of three lake successions in The Netherlands: regional vegetation history in relation to NW European vegetation developments. Boreas 17:385–402CrossRefGoogle Scholar
  10. Boston HL, Adams MS (1987) Productivity, growth and photosynthesis of two small ‘isoetid’ plants Littorella uniflora and Isoetes macrospora. J Ecol 75:333–350CrossRefGoogle Scholar
  11. Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005a) Mid- to late-Holocene land-use change and lake development at Dalland Sø, Danmark: trends in lake primary production as reflected by algal and macrophyte remains. Holocene 15:1130–1142CrossRefGoogle Scholar
  12. Bradshaw EG, Rasmussen P, Odgaard BV (2005b) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 15:1152–1162CrossRefGoogle Scholar
  13. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  14. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic Chironomidae larvae in palaeoecology (Quaternary Research Association Technical Guide No. 10). Quaternary Research Association, LondonGoogle Scholar
  15. Bull IA, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Intern 27:647–654CrossRefGoogle Scholar
  16. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  17. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771CrossRefGoogle Scholar
  18. Cheng W, Sun L, Kimpe LE, Mallory ML, Smol JP, Gallant LR, Li J, Blais JM (2016) Sterols and Stanols preserved in pond sediments track seabird biovectors in a high arctic environment. Environ Sci Technol 50:9351–9360CrossRefGoogle Scholar
  19. Dapples F, Lotter AF, van Leeuwen JFN, van der Knaap WO, Dimitriadis S, Oswald D (2002) Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. J Paleolimnol 27:239–248CrossRefGoogle Scholar
  20. Engels S, van Geel B (2012) The effects of changing solar activity on climate: contributions from palaeoclimatological studies. J Space Weather Space Clim 2:A09CrossRefGoogle Scholar
  21. Engels S, Bohncke SJP, Bos JAA, Brooks SJ, Heiri O, Helmens KF (2008a) Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen isotope stage 3. J Paleolimnol 40:49–61CrossRefGoogle Scholar
  22. Engels S, Bohncke SJP, Heiri O, Nyman M (2008b) Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages. J Paleolimnol 40:129–142CrossRefGoogle Scholar
  23. Engels S, van Geel B, Buddelmeijer N, Brauer A et al (2015) High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) et al. central European records. Rev Palaeobot Palynol 221:160–170CrossRefGoogle Scholar
  24. Engels S, Bakker MAJ, Bohncke SJP, Cerli C, Hoek WZ, Jansen B, Peters T, Renssen H, Sachse D, van Aken JM, van den Bos V, van Geel B, van Oostrom R, Winkels T, Wolma M (2016) Centennial-scale lake level lowstand at Lake Uddelermeer (The Netherlands) indicates changes in moisture source region prior to the 2.8-kyr event. Holocene 26:1075–1091CrossRefGoogle Scholar
  25. Evershed RP, Bethell PH, Reynolds PJ, Walsh NJ (1997) 5β-Stigmastanol and related 5β-Stanols as biomarkers of manuring: analysis of modern experimental material and assessment of the archaeological potential. J Archaeol Sci 24:485–495CrossRefGoogle Scholar
  26. Eyssen HJ, Parmentier GG, Compernolle FC, De Pauw G, Piessens-Denef M (1973) Biohydrogenation of Sterols by Eubacterium ATCC 21,408—Nova Species. Eur J Biochem 36:411–421CrossRefGoogle Scholar
  27. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  28. Farmer AM, Spence DHN (1986) The growth strategies and distribution of isoetids in Scottish freshwater lochs. Aquat Bot 26:247–258CrossRefGoogle Scholar
  29. Groenewoudt BJ, Schut PAC, van der Heijden RFJG, Peeters JHM, Wispelwey MH (2006) Een inventariserend veldonderzoek bij de Hunneschans (Uddel, Gelderland). Rapportage Archeologische Monumentenzorg 143. RACM: AmersfoortGoogle Scholar
  30. Grontmij (1996) Restauratieplan Uddelermeer. Grontmij Milieu, ArnhemGoogle Scholar
  31. Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756CrossRefGoogle Scholar
  32. Heiri O, Cremer H, Engels S, Hoek W, Peeters W, Lotter AF (2007) Late-Glacial summer temperatures in the Northwest European lowlands: a new chironomid record from Hijkermeer, the Netherlands. Quat Sci Rev 26:2420–2437CrossRefGoogle Scholar
  33. Hillbrand M, van Geel B, Hasenfratz A, Hadorn P, Haas JN (2014) Non-pollen palynomorphs show human- and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24:559–568CrossRefGoogle Scholar
  34. Hübener T, Adler S, Werner P, Schult M, Erlenkeuser H, Meyer H, Bahnwart M (2009) A multi-proxy paleolimnological reconstruction of trophic state reference conditions for stratified carbonate-rich lakes in northern Germany. Hydrobiologia 631:303–327CrossRefGoogle Scholar
  35. Juggins S (2011) C2 data analysis (version 1.7.4). Newcastle University, NewcastleGoogle Scholar
  36. Juggins S (2017) Rioja: analysis of quaternary science data, R package version (0.9-15). (http://cran.r-project.org/package=rioja)
  37. Kirilova EP, van Hardenbroek M, Heiri O, Cremer H, Lotter AF (2010a) 500 years of trophic-state history of a hypertrophic Dutch dike-breach lake. J Paleolimnol 43:829–842CrossRefGoogle Scholar
  38. Kirilova EP, Cremer H, Heiri O, Lotter AF (2010b) Eutrophication of moderately deep Dutch lakes during the past century: flaws in the expectations of water management? Hydrobiologia 637:157–171CrossRefGoogle Scholar
  39. Kuneš P, Odgaard BV, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–2164CrossRefGoogle Scholar
  40. Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127CrossRefGoogle Scholar
  41. Lotter AF (2001) The palaeolimnology of Soppensee (central Switzerland), as evidenced by diatom, pollen, and pigment-analyses. J Paleolimnol 25:65–79CrossRefGoogle Scholar
  42. Lotter AF, Birks HJB (1993) The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J Quat Sci 8:263–276CrossRefGoogle Scholar
  43. Lotter AF, Birks HJB (2003) The Holocene palaeolimnology of Sägistalsee and its environmental history—a synthesis. J Paleolimnol 30:333–342CrossRefGoogle Scholar
  44. MacDonald IA, Bokkenheuser VD, Winter J, McLernon AK, Mosbach EH (1983) Degradation of fecal sterols in the human gut. J Lipid Res 24:675–694Google Scholar
  45. McGowan S (2013) Pigment studies. In: Elias SA (ed) The encyclopedia of quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 326–338CrossRefGoogle Scholar
  46. McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecol 86:2200–2211CrossRefGoogle Scholar
  47. Meyer-Jacob C, Tolu J, Bigler C, Yang H, Bindler R (2015) Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. Proc Nat Acad Sci 112:6579–6584CrossRefGoogle Scholar
  48. Millet L, Giguet-Covex C, Verneaux V, Druart J-C, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978CrossRefGoogle Scholar
  49. Moller Pillot HKM (2009) Chironomidae Larvae—biology and ecology of the chironomini. KNNV Publishing, ZeistGoogle Scholar
  50. Moller Pillot HKM (2013) Chironomidae Larvae—biology and ecology of the aquatic orthocladiinae. KNNV Publishing, ZeistGoogle Scholar
  51. Moller Pillot HKM, Vallenduuk HJ (2007) Chironomidae Larvae—biology and ecology of the chironomini. KNNV Publishing, ZeistGoogle Scholar
  52. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  53. Nienhuis PH, Bakker JP, Grootjans AP, Gulati RD, de Jonge VN (2002) The state of the art of aquatic and semi-aquatic ecological restoration projects in the Netherland. Hydrobiologia 478:219–233CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan
  55. Polak B (1959) Palynology of the Uddelermeer. Acta Botanica Neerlandica 8:547–571CrossRefGoogle Scholar
  56. Punt W, Clarke GCS (1984) The Northwest European Pollen Flora, IV. Elsevier, AmsterdamGoogle Scholar
  57. Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005CrossRefGoogle Scholar
  58. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414CrossRefGoogle Scholar
  59. Roelofs JGM, Schuurkes JAAR, Smits AJM (1984) Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquat Bot: 389–411Google Scholar
  60. Rørslett B, Brettum P (1989) The genus Isoëtes in Scandinavia: an ecological review and perspectives. Aquat Bot 35:223–261CrossRefGoogle Scholar
  61. Sand-Jensen K (1978) Metabolic adaptation and vertical zonation of Littorella uniflora (L.) Aschers and Isoetes lacustris (L.). Aquat Bot 4:1–10CrossRefGoogle Scholar
  62. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  63. Slicher van Bath BH (1987) De agrarische Geschiedenis van West-Europa (500–1850). Het Spectrum, UtrechtGoogle Scholar
  64. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environm Pollut 100:179–196CrossRefGoogle Scholar
  65. Smol JP (2008) Pollution of lake and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, OxfordGoogle Scholar
  66. Thienemann M, Masi A, Kusch S, Sadori L, John S, Francke A, Wagner B, Rethemeyer J (2017) Organic geochemical and palynological evidence for Holocene natural and anthropogenic environmental change at Lake Dojran (Macedonia/Greece). The Holocene 27:1103–1114CrossRefGoogle Scholar
  67. Van den Bos V, Engels S, Bohncke SJP, Cerli C, Jansen B, Kalbitz K, Peterse F, Renssen H, Sachse D (2017) Late Holocene changes in vegetation and atmospheric circulation at Lake Uddelermeer (The Netherlands) reconstructed using lipid biomarkers and compound specific δD analysis. J Quat Sci. https://doi.org/10.1002/jqs.3006 Google Scholar
  68. Van der Molen DT, Portielje R (1999) Multi-lake studies in the Netherlands: trends in eutrophication. Hydrobiologia 408:359–365CrossRefGoogle Scholar
  69. Van Eeden FW (1886) Onkruid. Botanische wandelingen van F.W. van Eeden, Tjeenk WillinkGoogle Scholar
  70. Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  71. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal and siliceous indicators. Kluwer, Dordrecht, pp 99–119CrossRefGoogle Scholar
  72. Van Geel B, Mur LA, Ralskajasiewiczowa M, Goslar T (1994) Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gosciaz (Central Poland). Rev Palaeobot Palynol 83:97–105CrossRefGoogle Scholar
  73. Van Geel B, Buurman J, Waterbolk HT (1996) Archeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460CrossRefGoogle Scholar
  74. Vane CH, Kim AW, McGowan S, Leng MJ, Heaton THE, Kendrick CP, Coombs P, Yang H, Swann GEA (2010) Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes. Sci Total Environ 409:345–356CrossRefGoogle Scholar
  75. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99CrossRefGoogle Scholar
  76. Walker MJC, Berkelhammer M, Björk S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659CrossRefGoogle Scholar
  77. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513CrossRefGoogle Scholar
  78. Wiik E, Bennion H, Sayer CD, Davidson TA, McGowan S, Patmore IR, Clarke SJ (2015) Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK. Freshw Biol 60:2226–2247CrossRefGoogle Scholar
  79. Woodbridge J, Rm Fyfe, Roberts N, Downey S, Edinborough K, Shennan S (2014) The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. J Archaeol Sci 51:216–224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
  2. 2.School of GeographyBirkbeck University of LondonLondonUK
  3. 3.Department of Sustainable Soils and Grassland SystemsRothamsted ResearchOkehamptonUK
  4. 4.Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations