Journal of Paleolimnology

, Volume 58, Issue 4, pp 511–532 | Cite as

Geochemical imprints of coupled paleoenvironmental and provenance change in the lacustrine sequence of Orog Nuur, Gobi Desert of Mongolia

  • Kaifeng Yu
  • Frank Lehmkuhl
  • Bernhard Diekmann
  • Christian Zeeden
  • Veit Nottebaum
  • Georg Stauch
Original paper
  • 97 Downloads

Abstract

In the arid environment, due to the scarcity of a continuous terrestrial archive, lacustrine sequences are often employed as a paleoenvironmental repository. However, numerous spatial and temporal heterogeneities exist concerning previously studied sites in arid central Asia. Furthermore, surveys using a XRF core scanning technique on lacustrine sequences retrieved in hyperarid desert settings are largely rare. Hence, two parallel sediment cores (ONW I; ONW II) were retrieved from Orog Nuur, in the Gobi Desert of Mongolia. Continuous, high-resolution elemental abundances at a 1-cm scanning step size were examined in core ONW II using XRF core scanning. To constrain the data quality, elements with high error margins relative to measured peak areas and those elements/proxies below the significance level during the multivariate statistics are excluded for environmental/provenance implications. Based on multivariate statistical evaluation, the bulk-geochemistry of the core sediments are governed by (1) grain-size composition, (2) authigenic productivity (Ca, Cl, CaCO3) in an alkaline environment, (3) allochthonous organic material (TOC and C/Natomic), and (4) terrigenous input via fluvial inflows, as well as quasi-constant aeolian input through the late Quaternary (Al, Si, K, Ti, and Fe). Disparate source lithotypes, as well as authigenic productivity of the lake system existed before and after Termination I. The Holocene was dominated by a distinct high productivity alkaline environment with more felsic and alkaline input relative to the late Pleistocene. This might be attributed to an increased hydrodynamic strength of riverine inflow and/or intensified erosion and weathering of felsic source rocks in the upper catchment of the Orog Nuur. Therefore, in order to gain a better understanding of the bulk-geochemistry of lake sediments, the coupled provenance and environmental signatures, as well as land surface processes in the catchment need to be systematically discerned. Thus, the XRF core scanning data obtained in this study would have practical and complimentary merit for other lacustrine studies focused on the desert realm across the globe.

Keywords

XRF core scanning Orog Nuur Provenance Grain size Late Quaternary Gobi Desert 

Supplementary material

10933_2017_7_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
10933_2017_7_MOESM2_ESM.docx (378 kb)
Supplementary material 2 (DOCX 377 kb)
10933_2017_7_MOESM3_ESM.xlsx (1 mb)
Supplementary material 3 (XLSX 1026 kb)
10933_2017_7_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 15 kb)

References

  1. Baljinnyam I, Bayasgalan A, Brorisov BA, Cisternas A, Demyanovich MG, Ganbaatar L, Kochetkov VM, Kurushin RA, Molnar P, Philip H, Vashchilov YY (1993) Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geol Soc Am Mem 181:26–52Google Scholar
  2. Bertrand S, Hughen K, Giosan L (2015) Limited influence of sediment grain size on elemental XRF core scanner measurements. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 473–490Google Scholar
  3. Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 2: physical and geochemical methods. Developments in paleoenvironmental research, vol 2, pp 83–130Google Scholar
  4. Bridge JS, Demicco RV (2008) Earth surface processes, landforms and sediment deposits. Cambridge University Press, Cambridge, p 61CrossRefGoogle Scholar
  5. Calvert SE, Pedersen TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, De Vernal A (eds) Proxies in late cenozoic paleoceanography. Developments in marine geology, vol 1, pp 567–625Google Scholar
  6. Chen FH, Yu ZC, Yang ML, Ito E, Wang SM, Madsen DB, Huang XZ, Zhao Y, Sato T, Birks HJB, Bommer I, Chen JH, An CB, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364CrossRefGoogle Scholar
  7. Chilingar GV, Zenger DH, Bissell HJ, Wolf KH (1979) Dolomites and dolomitization. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Developments in sedimentology, vol 25A, pp 428–536Google Scholar
  8. Conroy JL, Overpeck JT, Cole JE, Liu KB, Wang L, Ducea MN (2013) Dust and temperature influences on glaciofluvial sediment deposition in southwestern Tibet during the last millennium. Glob Planet Change 107:132–144CrossRefGoogle Scholar
  9. Costa KM, Russel JM, Vogel H, Bijaksana S (2014) Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 417:467–475CrossRefGoogle Scholar
  10. Cunningham WD (2005) Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogeny. Earth Planet Sci Lett 240:436–444CrossRefGoogle Scholar
  11. Dapples EC (1979) Silica as an agent in diagenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Developments in sedimentology, vol 25A, pp 99–142Google Scholar
  12. Davies SJ, Lamb HF, Roberts SJ (2015) Micro-XRF core scanning in palaeolimnology: recent developments. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 189–226Google Scholar
  13. Diekmann B, Hofmann J, Heinrich R, Fütterer DK, Röhl U, Wie KY (2008) Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Mar Geol 255:83–95CrossRefGoogle Scholar
  14. Dulski P, Brauer A, Mangili C (2015) Combined µ-XRF and microfacies techniques for lake sediment analyses. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 325–349Google Scholar
  15. Felauer T (2011) Jungquartäre Landschafts und Klimagschichte der Südmongolei. Dissertation an der Fakultät für Georessourcen und Materialtechnik der RWTH Aachen. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3666/
  16. Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178CrossRefGoogle Scholar
  17. Hunt JE, Croudace IW, MacLachland SE (2015) Use of calibrated ITRAX XRF data in determining turbidite geochemistry and provenance in Agadir Basin, Northwest African passive margin. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 127–146Google Scholar
  18. Jarvis S, Croudace IW, Rothwell RG (2015) Parameter optimization for the ITRAX core Scanner. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 535–562Google Scholar
  19. Johnsson MJ (1993) The system controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:1–20Google Scholar
  20. Kazancı N, Gulbabazadeh T, Leroy SAG, Ataselim Z, Gürbüz A (2016) Aeolian control on the deposition of high altitude lacustrine basins in the Middle East: The case of Lake Neor, NW Iran. Quat Int. doi:10.1016/j.quaint.2015.11.040 Google Scholar
  21. Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117CrossRefGoogle Scholar
  22. Lamb H, Bates C, Coombes P, Marshall M, Umer M, Davies S, Dejen E (2007) Late Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quat Sci Rev 26:287–299. doi:10.1016/j.quascirev.2006.11.020 CrossRefGoogle Scholar
  23. Lauterbach S, Brauer A, Andersen N, Danielopol D, Dulski P, Hüls M, Milecka K, Namiotko T, Obremska M, Grafenstein U, Participants D (2011) Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-alpine Lake Mondsee (northeastern Alps). J Quat Sci 26:253–267CrossRefGoogle Scholar
  24. Lee MK, Lee YI, Lim HS, Lee JI, Choi JH, Yoon HI (2011) Comparison of radiocarbon and OSL dating methods for a late Quaternary sediment core from Lake Ulaan, Mongolia. J Paleolimnol 45:127–135CrossRefGoogle Scholar
  25. Lehmkuhl F, Lang A (2001) Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). J Quat Sci 16:69–87CrossRefGoogle Scholar
  26. Lehmkuhl F, Klinge M, Rother H, Hülle D (2016) Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Ann Glaciol 57:169–178CrossRefGoogle Scholar
  27. Leinen M (1989) The late Quaternary record of atmospheric transport to the northwest Pacific from Asia. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer Academic Publishers, Dordrecht, pp 693–732Google Scholar
  28. Martinez-Ruiz F, Kastner M, Gallego-Torres D, Rodrigo-Gámiz M, Nieto-Moreno V, Ortega-Huertas M (2015) Paleoclimate and paleoceanography over the past 20,000 years in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat Sci Rev 107:25–46CrossRefGoogle Scholar
  29. Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL, Haltia-Hovi E, Kukkonen M, Lozhkin AV, Rosén P, Tarasov P, Vogel H, Wagner B (2012) 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337:315–320CrossRefGoogle Scholar
  30. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  31. Millot G (1970) Geology of clays, weathering, sedimentology, geochemistry. Springer, Vienna, pp 357–381Google Scholar
  32. Mischke S, Herzschuh U, Zhang CJ, Bloemendal J, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Glob Planet Change 46:337–359CrossRefGoogle Scholar
  33. Mischke S, Weynell M, Zhang CJ, Wiechert U (2013) Spatial variability of 14C reservoir effects in Tibetan Plateau lakes. Quat Int 313–314:147–155CrossRefGoogle Scholar
  34. Mukherji AK (1970) Analytical chemistry of zirconium and hafnium. Pergamon Press, Oxford, pp 1–11CrossRefGoogle Scholar
  35. Murad W (2011) Palynological studies on the late quaternary palaeoecology of the Gobi Desert in Mongolia. Ph.D. thesis, Georg-August-Universität Göttingen, p 128Google Scholar
  36. Nesbitt HW, Young GM (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 42:341–358CrossRefGoogle Scholar
  37. Nilson E, Lehmkuhl F (2001) Interpreting temporal patterns in the late Quaternary dust flux from Asia to the North Pacific. Quat Int 76(77):67–76CrossRefGoogle Scholar
  38. NIOZ, Avaatech (2007) XRF core scanner user manual version 2.0. Royal Netherlands Institute of Sea Research and Avaatech XRF Core Scanner TechnologyGoogle Scholar
  39. Norman MD, De Deckker P (1990) Trace metals in lacustrine and marine sediments: a case study from the Gulf of Carpentaria, Northern Australia. Chem Geol 82:299–318CrossRefGoogle Scholar
  40. Ohlendorf C, Wennrich V, Enters D (2015) Experiences with XRF-scanning of long sediment records. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 351–372Google Scholar
  41. Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchronicity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885CrossRefGoogle Scholar
  42. Petschick R, Kuhn G, Gingele FX (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229CrossRefGoogle Scholar
  43. Pettijohn FJ, Potter PE, Siever R (1973) Sand and sandstone. Springer, New York, pp 24–63CrossRefGoogle Scholar
  44. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, HattŽ C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaise KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  45. Richter RO, van der Gaast S, Koster R, Vaars A, Gieles R, de Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis. Geological Society London Special Publications, vol 267, pp 39–50Google Scholar
  46. Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139CrossRefGoogle Scholar
  47. Rother H, Lehmkuhl F, Fink D, Nottebaum V (2014) Surface exposure dating reveals MIS-3 glacial maximum in the Khangai Mountains of Mongolia. Quat Res 82:297–308CrossRefGoogle Scholar
  48. Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde, 15th edn. Spektrum Akademischer Verlag, BerlinGoogle Scholar
  49. Schillereff DN, Chiverrell RC, Croudace IW, Boyle JF (2015) An inter-comparison of µXRF scanning analytical methods for lake sediments. In: Croudace IW, Guy Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17, pp 583–600Google Scholar
  50. Schulte P, Lehmkuhl F, Steininger F, Loibl D, Lockot G, Protze J, Fischer P, Stauch G (2016) Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. CATENA 137:392–405CrossRefGoogle Scholar
  51. Shanahan TM, Overpeck JT, Hubeny JB, King J, Hu FS, Hughen K, Miller G, Black J (2008) Scanning micro-X-ray fluorescence elemental mapping: a new tool for the study of laminated sediment records. Geochem Geophys Geosyst 9:Q02016. doi:10.1029/2007GC001800 CrossRefGoogle Scholar
  52. Sinha R, Smykatz-Kloss W, Stüben D, Harrison SP, Berner Z, Kramar U (2006) Late Quaternary paleoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeogr Palaeoclimatol Palaeoecol 233:252–270CrossRefGoogle Scholar
  53. Stein R, Grobe H, Wahsner M (1994) Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Mar Geol 119:269–285CrossRefGoogle Scholar
  54. Stuiver MP, Reimer J, Bard E, Burr GS, Hughen KA, Kromer B, McCormac G, Jvd Plicht, Spurk M (1998) INTCAL98 radiocarbon age calibration. Radiocarbon 40:1041–1083CrossRefGoogle Scholar
  55. Tarasov PE, Bezrukova E, Karabanov E, Nakagawa T, Wagner M, Kulagina N, Letunova P, Abzaeva A, Granoszewski W, Riedel F (2007) Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr Palaeoclimatol Palaeoecol 252:440–457CrossRefGoogle Scholar
  56. Tucker ME, Wright VP (1990) Carbonate sedimentology. Wiley, Oxford, pp 164–190CrossRefGoogle Scholar
  57. Vogt C (1997) Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes. Rep Polar Res 251:1–309Google Scholar
  58. Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanner for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438CrossRefGoogle Scholar
  59. Wirth SB, Gilli A, Niemann H, Dahl TW, Ravasi D, Sax N, Hamann Y, Peduzzi R, Peduzzi S, Tonolla M, Lehmann MF, Anselmetti FS (2013) Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochim Cosmochim Acta 120:220–238CrossRefGoogle Scholar
  60. Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat Sci Rev 29:1138–1155CrossRefGoogle Scholar
  61. Yang XP, Scuderi LA (2010) Hydrological and climatic changes in deserts of China since the late Pleistocene. Quat Res 73:1–9CrossRefGoogle Scholar
  62. Yu G, Cui F, Shi YF, Zheng Y (2007) Late marine isotope stage 3 paleoclimate for East Asia: a data-modal comparison. Palaeogeogr Palaeoclimatol Palaeoecol 250:167–183CrossRefGoogle Scholar
  63. Yu KF, Hartmann K, Nottebaum V, Stauch G, Lu HY, Zeeden C, Yi SW, Wünnemann B, Lehmkuhl F (2016) Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW China using a robust geochemical approach. J Asian Earth Sci 119:128–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of GeographyRWTH Aachen UniversityAachenGermany
  2. 2.Alfred Wegener InstituteHelmholtz Center for Polar and Marine ResearchPotsdamGermany
  3. 3.Energy and Climate Change DivisionGlobal Energy Interconnection Development and Cooperation OrganizationBeijingChina
  4. 4.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina

Personalised recommendations