Journal of Paleolimnology

, Volume 56, Issue 4, pp 315–330 | Cite as

A geochemical perspective on the impact of development at Alta Lake, British Columbia, Canada

  • Dewey W. Dunnington
  • Ian S. Spooner
  • Chris E. White
  • R. Jack Cornett
  • Dave Williamson
  • Mike Nelson
Original paper


Small, temperate lakes are important to communities across Canada, but commonly lack the long-term water quality records that are required to assess the impact of development and environmental change. We measured a combination of bulk sediment geochemistry and stable isotopes of carbon and nitrogen in a 210Pb- and 14C-dated sediment core from Alta Lake, Whistler, British Columbia. Channel avulsion at AD 1754 ± 81 on the 21-Mile Creek alluvial fan resulted in increased deposition of organic matter with a signal of autochthonous production. A decrease in δ13C beginning at AD 1949 ± 17 indicates an increase in pelagic productivity relative to benthic productivity and/or sewage input to Alta Lake. A corresponding increase in δ15N indicates an increase in sewage-derived nutrients during the same time period. These changes were synchronous and coincide with the onset of rapid development in the Whistler Valley. Increased metal deposition (Cu, As, and Zn) during the same period resulted from watershed disturbance during highway construction. Cu, As, and Zn concentrations correlated positively with C concentrations and negatively with Ti and K, suggesting removal of metals from the water column is closely related to autochthonous organic matter deposition. Fe/Mn ratios and Mo concentrations were expected to respond to hypolimnetic oxygen availability in response to decreased flushing rate and increased productivity following the loss of inflow from 21-Mile Creek, but did not display a clear time-stratigraphic signal. Collectively, these data suggest that the combination of bulk geochemistry and stable isotopes was an effective suite of variables for inferring environmental change and the effects of development on Alta Lake.


C/N ratios Productivity Bulk geochemistry C and N isotopes British Columbia 



The staff of Cascade Environmental Resource Group, including Ruth Begg and Candace Rose-Taylor provided support in the field; Heather Beresford at the Resort Municipality of Whistler and the staff of the Whistler Museum assisted in providing historical documentation and previous scientific work from the region; and many local residents shared their historical observations of Alta Lake, providing a local perspective that was valuable in the interpretation of the results of this study. Funding for this study was provided by NSERC Discovery (I. Spooner), NSERC Engage (to I. Spooner and Cascade Environmental Resource Group), and Acadia University. Comments on this manuscript by Rob Raeside and two anonymous reviewers were greatly appreciated.


  1. Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35. doi: 10.1007/BF00028424 CrossRefGoogle Scholar
  2. Beak Consultants Limited (1979) environmental assessment of lake level stabilization proposals. Report for the Resort Municipality of Whistler, WhistlerGoogle Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. doi: 10.1111/j.1469-8137.1996.tb04521.x CrossRefGoogle Scholar
  4. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474. doi: 10.1214/ba/1339616472 CrossRefGoogle Scholar
  5. Boyle JF (2001) Inorganic geochemical methods in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2., Physical and geochemical methodsSpringer, Berlin, pp 83–141CrossRefGoogle Scholar
  6. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi: 10.1023/A:1008078222806 CrossRefGoogle Scholar
  7. Brugam RB (1978) Human disturbance and the historical development of Linsley pond. Ecology 59:19–36. doi: 10.2307/1936629 CrossRefGoogle Scholar
  8. Brunschön C, Haberzettl T, Behling H (2010) High-resolution studies on vegetation succession, hydrological variations, anthropogenic impact and genesis of a subrecent lake in southern Ecuador. Veg Hist Archaeobotany 19:191–206. doi: 10.1007/s00334-010-0236-4 CrossRefGoogle Scholar
  9. Buchaca T, Skov T, Amsinck SL, Gonçalves V, Azevedo JMN, Andersen TJ, Jeppesen E (2011) Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14:458–477. doi: 10.1007/s10021-011-9423-0 CrossRefGoogle Scholar
  10. Bull J (2009) Assessments of stormwater quality and snowmelt runoff in Whistler creeks. British Columbia Ministry of Environment, VictoriaGoogle Scholar
  11. Burnett WC, Schaeffer OA (1980) Effect of ocean dumping on 13C/12C ratios in marine sediments from the New York Bight. Estuar Coast Mar Sci 11:605–611. doi: 10.1016/S0302-3524(80)80013-2 CrossRefGoogle Scholar
  12. Cascade Environmental Resource Group Ltd (1999) Alta lake limnology study. Resort Municipality of Whistler, WhistlerGoogle Scholar
  13. Choudhary P, Routh J, Chakrapani GJ (2013) A 100-year record of changes in organic matter characteristics and productivity in Lake Bhimtal in the Kumaon Himalaya, NW India. J Paleolimnol 49:129–143. doi: 10.1007/s10933-012-9647-9 CrossRefGoogle Scholar
  14. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems: The history and evolution of lake systems. Oxford University Press, OxfordGoogle Scholar
  15. Cui Y, Katay F, Nelson JL, Han T, Desjardins PJ, Sinclair L (2013) BCGS Open File 2013–04: British Columbia Digital GeologyGoogle Scholar
  16. Dumont HJ (1972) The biological cycle of molybdenum in relation to primary production and waterbloom formation in a eutrophic pond. Int Ver Fuer Theor Angew Limnol Verhandlungen 18:84–92Google Scholar
  17. Dunnington DW (2011) Using paleolimnological methods to track late Holocene environmental change at Long Lake, New Brunswick: Nova Scotia Border Region, Canada. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  18. Dunnington DW (2015) A 500-year applied paleolimnological assessment of environmental change at Alta Lake, Whistler, British Columbia, Canada. M.Sc. Thesis, Acadia UniversityGoogle Scholar
  19. Edlund MB, Hobbs JR, Williamson J (2015) A paleolimnological study of bone Lake, Polk County, Wisconsin. St. Croix Watershed Research Station, Science Museum of Minnesota, LuckGoogle Scholar
  20. Ekdahl EJ, Teranes JL, Guilderson TP, Turton CL, McAndrews JH, Wittkop CA, Stoermer EF (2004) Prehistorical record of cultural eutrophication from Crawford Lake, Canada. Geology 32:745–748. doi: 10.1130/G20496.1 CrossRefGoogle Scholar
  21. Englehardt PO (2013) Lead accumulation in open water wet ecosystems in the border marsh region of New Brunswick and Nova Scotia. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  22. Engstrom DR, Wright HE (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG, Tutin W (eds) Lake sediments and environmental history: studies in palaeolimnology and palaeoecology in honour of Winifred Tutin. Leicester University Press, Leicester, pp 11–67Google Scholar
  23. Enns S (1988) Assessment Report No. 18402: 1988 Final Report of the Northair Property. Vancouver Mines Division, VancouverGoogle Scholar
  24. Environment Canada (2015) Historical hydrometric data: WaterOffice—Environment Canada. Accessed 2 Sept 2015
  25. Filippi ML, Talbot MR (2005) The palaeolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Quat Sci Rev 24:1303–1328. doi: 10.1016/j.quascirev.2004.10.009 CrossRefGoogle Scholar
  26. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser Oldendorf 124:307–312CrossRefGoogle Scholar
  27. Gallagher L, Macdonald RW, Paton DW (2004) The historical record of metals in sediments from six lakes in the Fraser River Basin, British Columbia. Water Air Soil Pollut 152:257–278CrossRefGoogle Scholar
  28. Garrison PJ, Wakeman RS (2000) Use of paleolimnology to document the effect of lake shoreland development on water quality. J Paleolimnol 24:369–393CrossRefGoogle Scholar
  29. Gearing PJ, Gearing JN, Maughan JT, Oviatt CA (1991) Isotopic distribution of carbon from sewage sludge and eutrophication in the sediments and food web of estuarine ecosystems. Environ Sci Technol 25:295–301. doi: 10.1021/es00014a012 CrossRefGoogle Scholar
  30. Glew JR (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235–239CrossRefGoogle Scholar
  31. Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243. doi: 10.1007/BF00195474 CrossRefGoogle Scholar
  32. Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, New York, pp 73–105Google Scholar
  33. Goericke R, Montoya JP, Fry B (1994) Physiology of isotope fractionation in algae and cyanobacteria. In: Lajtha K, Michener R (eds) Stable Isotopes in ecology and environmental science. Blackwell Scientific Publications, Oxford, UK, pp 199–233Google Scholar
  34. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. doi: 10.1016/0098-3004(87)90022-7 CrossRefGoogle Scholar
  35. Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883. doi: 10.1139/f95-248 CrossRefGoogle Scholar
  36. Guyard H, Chapron E, St-Onge G, Anselmetti FS, Arnaud F, Magand O, Francus P, Mélières MA (2007) High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat Sci Rev 26:2644–2660. doi: 10.1016/j.quascirev.2007.07.007 CrossRefGoogle Scholar
  37. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214. doi: 10.4319/lo.1998.43.2.0200 CrossRefGoogle Scholar
  38. Hollander DJ, Smith MA (2001) Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta 65:4321–4337. doi: 10.1016/S0016-7037(00)00506-8 CrossRefGoogle Scholar
  39. Jacques Whitford AXYS Ltd. (2007) alta lake limnology study. Resort Municipality of Whistler, WhistlerGoogle Scholar
  40. Juggins S (2015) Rioja: Analysis of Quaternary Science Data. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  41. Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI (2006) Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol Oceanogr 51:2821–2827CrossRefGoogle Scholar
  42. Kelley CA, Coffin RB, Cifuentes LA (1998) Stable isotope evidence for alternative bacterial carbon sources in the Gulf of Mexico. Limnol Oceanogr 43:1962–1969. doi: 10.4319/lo.1998.43.8.1962 CrossRefGoogle Scholar
  43. Koch J, Clague JJ, Osborn GD (2007) Glacier fluctuations during the past millennium in Garibaldi Provincial Park, southern Coast Mountains, British Columbia. Can J Earth Sci 44:1215–1233. doi: 10.1139/e07-019 CrossRefGoogle Scholar
  44. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake: the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  45. Köster D, Pienitz R, Wolfe BB, Barry S, Foster DR, Dixit SS (2005) Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquat Ecosyst Health Manag 8:117–131. doi: 10.1080/14634980590953743 CrossRefGoogle Scholar
  46. Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117. doi: 10.1002/jqs.1438 CrossRefGoogle Scholar
  47. Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51:2262–2277CrossRefGoogle Scholar
  48. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments: volume 5—data handling and numerical techniques. Kluwer Academic Publishers, New YorkGoogle Scholar
  49. Leng MJ, Henderson ACG (2013) Recent advances in isotopes as palaeolimnological proxies. J Paleolimnol 49:481–496. doi: 10.1007/s10933-012-9667-5 CrossRefGoogle Scholar
  50. Loder A (2014) Examination of metals in gastropods to determine the potential for accumulation in the Border Marsh Region. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  51. Magyar B, Moor HC, Sigg L (1993) Vertical distribution and transport of molybdenum in a lake with a seasonally anoxic hypolimnion. Limnol Oceanogr 38:521–531. doi: 10.4319/lo.1993.38.3.0521 CrossRefGoogle Scholar
  52. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102. doi: 10.1007/s10933-008-9249-8 CrossRefGoogle Scholar
  53. Menounos B (2006) Anomalous early 20th century sedimentation in progracial Green Lake, British Columbia, Canada. Can J Earth Sci 43:671–678. doi: 10.1139/E06-016 CrossRefGoogle Scholar
  54. Menounos B, Clague JJ (2008) Reconstructing hydro-climatic events and glacier fluctuations over the past millennium from annually laminated sediments of Cheakamus Lake, southern Coast Mountains, British Columbia, Canada. Quat Sci Rev 27:701–713. doi: 10.1016/j.quascirev.2008.01.007 CrossRefGoogle Scholar
  55. Menounos B, Clague JJ, Gilbert R, Slaymaker O (2005) Environmental reconstruction from a varve network in the southern Coast Mountains, British Columbia, Canada. Holocene 15:1163–1171. doi: 10.1191/0959683605hl888rp CrossRefGoogle Scholar
  56. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi: 10.1016/0009-2541(94)90059-0 CrossRefGoogle Scholar
  57. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2., Physical and geochemical methodsKluwer Academic Publishers, New York, pp 239–269CrossRefGoogle Scholar
  58. Misiuk B (2014) A multi-proxy comparative paleolimnological study of anthropogenic impact between first and second Lake, Lower Sackville, Nova Scotia. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  59. Nichols RW (1992) A design brief on the floodplain mapping study: Whistler area. Water Management Division, Province of British ColumbiaGoogle Scholar
  60. Petersen F (2012) First tracks: Whistler’s early history. Whistler Museum and Archives Society, WhistlerGoogle Scholar
  61. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  62. Racey K (1926) Notes on the birds observed in the Alta lake region, B. C. Auk 43:319–325. doi: 10.2307/4075424 CrossRefGoogle Scholar
  63. Rau G (1978) Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201:901–902CrossRefGoogle Scholar
  64. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffman DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BPGoogle Scholar
  65. Rosenmeier MF, Brenner M, Kenney WF, Whitmore TJ, Taylor CM (2004) Recent eutrophication in the southern basin of lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiologia 511:161–172. doi: 10.1023/B:HYDR.0000014038.64403.4d CrossRefGoogle Scholar
  66. Routh J, Choudhary P, Meyers PA, Kumar B (2009) A sediment record of recent nutrient loading and trophic state change in Lake Norrviken, Sweden. J Paleolimnol 42:325–341. doi: 10.1007/s10933-008-9279-2 CrossRefGoogle Scholar
  67. Ruby EG, Jannasch HW, Deuser WG (1987) Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl Environ Microbiol 53:1940–1943Google Scholar
  68. Schiefer E, Menounos B, Slaymaker O (2006) Extreme sediment delivery events recorded in the contemporary sediment record of a montane lake, southern Coast Mountains, British Columbia. Can J Earth Sci 43:1777–1790. doi: 10.1139/e06-056 CrossRefGoogle Scholar
  69. Smol JP (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosyst Health 1:49–58CrossRefGoogle Scholar
  70. Smol JP (1995) Paleolimnological approaches to the evaluation and monitoring of ecosystem health: providing a history for environmental damage and recovery. In: Rapport DJ, Gaudet CL, Calow P (eds) Evaluating and monitoring the health of large-scale ecosystems. Springer, Berlin, pp 301–318CrossRefGoogle Scholar
  71. Smol JP (2009) Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley, New YorkGoogle Scholar
  72. Takahashi K, Yoshioka T, Wada E, Sakamoto M (1990) Temporal variations in carbon isotope ratio of phytoplankton in a eutrophic lake. J Plankton Res 12:799–808. doi: 10.1093/plankt/12.4.799 CrossRefGoogle Scholar
  73. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter: a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813CrossRefGoogle Scholar
  74. Terry DBS (2011) The effects of water level fluctuations and sediment resuspension on water quality at Tupper Lake, Nova Scotia. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  75. Thienpont JR, Ginn BK, Cumming BF, Smol JP (2008) An assessment of environmental changes in three lakes from King’s County (Nova Scotia, Canada) using diatom-based paleolimnological techniques. Water Qual Resour J Can 43:85–98Google Scholar
  76. Thompson AR (2006) Partial Diversion of 21 Mile Creek into Rainbow Creek, Whistler, B.C. Report for the Resort Municipality of Whistler, WhistlerGoogle Scholar
  77. Torres IC, Inglett PW, Brenner M, Kenney WF, Reddy KR (2012) Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J Paleolimnol 47:693–706. doi: 10.1007/s10933-012-9593-6 CrossRefGoogle Scholar
  78. Tracey B, Lee N, Card V (1996) Sediment indicators of meromixis: comparison of laminations, diatoms, and sediment chemistry in Brownie Lake, Minneapolis, USA. J Paleolimnol 15:129–132. doi: 10.1007/BF00196776 CrossRefGoogle Scholar
  79. Tymstra D (2013) A paleolimnological record of anthropogenic impact on water quality in First Lake, Lower Sackville, Nova Scotia. B.Sc.H. Thesis, Acadia UniversityGoogle Scholar
  80. Walker IR, Reavie ED, Palmer S, Nordin RN (1993) A palaeoenvironmental assessment of human impact on Wood Lake, okanagan valley, British Columbia, Canada. Quat Int 20:51–70. doi: 10.1016/1040-6182(93)90036-F CrossRefGoogle Scholar
  81. Whistler Question (1981) Water, water everywhere! Heavy Rains Flood Valley. Whistler Quest. pp 2–8Google Scholar
  82. White HE (2012) Paleolimnological records of post-glacial lake and wetland evolution from the Isthmus of Chignecto region, eastern Canada. M.Sc. Thesis, Acadia UniversityGoogle Scholar
  83. Wood LJ, Smith DJ (2013) Climate and glacier mass balance trends from AD 1780 to present in the Columbia Mountains, British Columbia, Canada. Holocene 23:739–748CrossRefGoogle Scholar
  84. Young RB, King RH (1989) Sediment chemistry and diatom stratigraphy of two high arctic isolation lakes, Truelove Lowland, Devon Island, N.W.T, Canada. J Paleolimnol 2:207–225. doi: 10.1007/BF00202047 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Earth and Environmental ScienceAcadia UniversityWolfvilleCanada
  2. 2.Nova Scotia Department of Natural ResourcesHalifaxCanada
  3. 3.André E. Lalonde Accelerator Mass Spectrometry Lab, Department of Earth ScienceUniversity of OttawaOttawaCanada
  4. 4.Cascade Environmental Resource GroupWhistlerCanada

Personalised recommendations