Journal of Paleolimnology

, Volume 59, Issue 1, pp 5–20 | Cite as

Paleolimnology of the Santa Clara Arriba paleolake (Triassic Cuyana rift basin): integrating sedimentology and palynology

  • C. A. Benavente
  • A. M. Zavattieri
  • A. C. Mancuso
  • F. Abarzúa
  • E. H. Gierlowski-Kordesch
Original Paper

Abstract

The Triassic Cuyana rift basin of west-central Argentina is composed of several asymmetric half-grabens with sedimentary fill representing diverse fluvial-lacustrine systems from the syn-rift to post-rift phases of the basin. The Santa Clara Arriba Formation (SCAF) consists of Triassic continental deposits cropping out at Santa Clara Creek which represents deposits of the Santa Clara subbasin located in the middle area of the rift basin. Integrated sedimentology and palynology studies of the SCAF have recognized a deltaic-lacustrine system where low delta plain and prodelta-lacustrine facies associations characterize the depositional setting during the final stage of rifting. Sedimentologic features of the sandstone bodies entering the lake suggest a low-gradient deltaic system. The organic matter (OM) rich lacustrine facies and its palynofacies support a stratified lake interpretation. The sedimentology and palynology suggest that the SCAF paleolake was a shallow overfilled lake. Palynostratigraphic analysis constrained a late Triassic (Carnian-early Norian) age for the SCAF, providing for the first time a framework for the last infill of the Santa Clara subbasin of the Cuyana rift basin.

Keywords

Upper Triassic Carnian-early Norian Rift Carbonates Lacustrine 

Notes

Acknowledgments

Authors wish to thank the Suarez family for kindly granting access to their property, and Mr. M. Bourget, Dr. G. Giordano, and Dr. C. Pirrone for field assistance. Funding was provided by PICT 2013-0805 (ACM), PICT 2011-2546 (AMZ), and PICT 2014-0489 (CAB). We thank Dr. Silvia Barredo and Dr. Mirta Quattrocchio for their constructive and helpful reviews to the manuscript. We also thank Guest Editors M. Rosen and S. Starratt for improving the quality of the manuscript.

Supplementary material

10933_2016_9916_MOESM1_ESM.jpg (831 kb)
Supplementary material 1 (JPEG 830 kb)
10933_2016_9916_MOESM2_ESM.jpg (562 kb)
Supplementary material 2 (JPEG 562 kb)
10933_2016_9916_MOESM3_ESM.pdf (676 kb)
Supplementary material 3 (PDF 676 kb)
10933_2016_9916_MOESM4_ESM.jpg (954 kb)
Supplementary material 4 (JPEG 953 kb)
10933_2016_9916_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 15 kb)
10933_2016_9916_MOESM6_ESM.pdf (200 kb)
Supplementary material 6 (PDF 201 kb)

References

  1. Baldoni AM (1972) El género Lepidopteris (Pteridosperma) en el Triásico de Argentina. Ameghiniana 9:1–16Google Scholar
  2. Barredo S, Chemale F, Marsicano C, Ávila JN, Ottone EG, Ramos VA (2011) Tectono-sequence stratigraphy and U-Pb zircon ages of the Rincón Blanco Depocenter, northern Cuyo Rift, Argentina. Gondwana Res 21:624–636. doi: 10.1016/j.gr.2011.05.016 CrossRefGoogle Scholar
  3. Barrier L, Proust J-N, Nalpas T, Robin C, Guillocheau F (2010) Control of alluvial sedimentation at foreland-basin active margins: a case study from the northeastern Ebro Basin (southeastern Pyrenees, Spain). J Sediment Res 80:728–749CrossRefGoogle Scholar
  4. Batten DJ (1982) Palynofacies, palaeoenvironments, and petroleum. J Micropalaeontol 1:107–114CrossRefGoogle Scholar
  5. Batten DJ (1996) Palynofacies and palaeoenvironmental interpretation. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 26A, pp 1011–1064. American Association of Stratigraphic Palynologists Foundation, Lexington, KentuckyGoogle Scholar
  6. Batten DJ, Stead DT (2005) Palynofacies analysis and its stratigraphic application. In: Koutsoukos EAM (ed) Applied stratigraphy, vol 10. Springer, Berlin, pp 203–226CrossRefGoogle Scholar
  7. Benavente CA, Mancuso AC, Cabaleri NG, Gierlowski-Kordesch EH (2015) Comparison of lacustrine successions and their paleohydrologic implications in the two subbasins of the Triassic Cuyana rift, Argentina. Sedimentology 62:1771–1813CrossRefGoogle Scholar
  8. Benvenuti M (2003) Facies analysis and tectonic significance of lacustrine fan-deltaic successions in the Pliocene–Pleistocene Mugello Basin, Central Italy. Sediment Geol 157(3–4):197–234CrossRefGoogle Scholar
  9. Bohacs KM (2012) Relation of hydrocarbon reservoir potential to Lake Basin type: an integrated approach to unraveling complex genetic relations among fluvial, Lake-Plain, lake margin and lake center strata. In: Baganz OW, Bartov Y, Bohacs K, Nummedal D (eds) Lacustrine sandstones reservoirs and hydrocarbon systems, vol 95, pp 13–56. AAPG Memoir, Tulsa, OklahomaGoogle Scholar
  10. Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake basins through space and time, vol 46, pp 3–34. AAPG Studies in Geology, Tulsa, OklahomaGoogle Scholar
  11. Bohacs KM, Carroll AR, Neal JE (2003) Lessons from large lake systems: thresholds, nonlinearity, and strange attractors. In: MA Chan, AW Archer (eds) Extreme depositional environments: mega end members in geologic time, vol 370, pp 75–90. GSA special paperGoogle Scholar
  12. Bordas LS (1944) Peces triásicos de la Quebrada de Santa Clara. Physis 19:453–460Google Scholar
  13. Bos IJ (2010) Architecture and facies distribution of organic-clastic lake fills in the fluvio-deltaic Rhine-Meuse System, The Netherlands. J Sediment Res 80:339–356CrossRefGoogle Scholar
  14. Buatois LA, Mángano MG (2004) Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society, London, pp 311–333Google Scholar
  15. Chebli GA, Ploszkiewicz JV, Azpiroz GM (2001) El Sistema Triásico y los hidrocarburos. In: Artabe A, Morel E, Zamuner A (eds) El Sistema Triásico en la Argentina, Fundación Museo de La Plata “Francisco Pascasio Moreno”, La Plata, pp 283–315Google Scholar
  16. Cohen AS (1990) Tectono-stratigraphic model for sedimentation in Lake Tanganyika, Africa. In: Katz BJ (ed) Lake Basin exploration: case studies and modern analogs, vol 50, pp 137–150. AAPG Memoir, Tulsa, OklahomaGoogle Scholar
  17. Combaz A (1964) Les palynofaciès. Revue du Micropaleontologie 7:205–218Google Scholar
  18. Cortés JM, González Bonorino G, Koukharsky MML (2003) Hoja Geológica 3369-03 Yalguaráz. Subsecretaría de Minería de la Nación, Servicio Geológico Minero Argentino, Provincias de San Juan y Mendoza República Argentina, p 95Google Scholar
  19. De Jersey NJ (1975) Miospore zones in the Lower Mesozoic of southern Queensland. In: Campbell KSW (ed) Gondwana geology. Australian National University Press, Canberra, pp 159–172Google Scholar
  20. De Jersey NJ, Raine JI (1990) Triassic and earliest Jurassic miospores from the Murihiku supergroup, New Zealand. N Z Geol Surv Paleontol Bull 62:1–164Google Scholar
  21. Gierlowski-Kordesch E, Kelts K (1994) Global geological record of Lake Basins. Cambridge University Press, Cambridge, p 427Google Scholar
  22. Goddard (1980) Geological rock color chart. Rock-color chart committee. Geological Society of AmericaGoogle Scholar
  23. Groeber P, Stipanicic PN (1953) Triásico. In: Groeber P, Stipanicic PN, Mingramm (eds) A.R.G.: Mesozoico. Geografía de la República Argentina, vol 2, no 1, pp 13–141. Sociedad Argentina de Estudios Geográficos GAEAGoogle Scholar
  24. Hamblin AP (1992) Half-graben lacustrine sedimentary rocks of the lower Carboniferous Strathlorne formation, Horton Group, Cape Breton Island, Nova Scotia, Canada. Sedimentology 39:263–284CrossRefGoogle Scholar
  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electr 4(1) [online content]. http://palaeoelectronica.org/2001_1/past/issue1_01.html
  26. Harrington HJ (1971) Descripción geológica de la Hoja 22c Ramblón. Provincias de Mendoza y San Juan. Boletín nº 114. Dirección Nacional de Geología y Minería, Argentina, p 81Google Scholar
  27. Horton BK, Schmitt JG (1996) Sedimentology of a lacustrine fan-delta system, Miocene Horse Camp Formation, Nevada, USA. Sedimentology 43:133–155CrossRefGoogle Scholar
  28. Johnson TC, McCave IN (2008) Transport mechanism and paleoclimatic significance of terrigenous silt deposited in varved sediments of an African rift lake. Limnol Oceanogr 53:1622–1632CrossRefGoogle Scholar
  29. Kokogian DA, Mancilla O (1989) Análisis estratigráfico secuencial de la Cuenca Cuyana. In: Chebli GA, Spalletti LA (eds) Cuencas sedimentarias Argentinas. Serie Correlación Geológica, vol 6. Universidad Nacional de Tucumán, San Miguel de Tucumán, pp 169–201Google Scholar
  30. Kokogian D, Spalletti L, Morel E, Artabe A, Martínez R, Alcober O, Milana J, Zavattieri A, Papú O (1999) Los depósitos continentales triásicos. In: Caminos R, Panza J (eds) Geología Regional Argentina, Instituto de Geología y Recursos Minerales, Anales, vol 29, pp 377–398Google Scholar
  31. Kroonenberg SB, Alekseevski NI, Aliyeva E, Allen MB, Aybulatov DN, Baba-Zadeh A, Badyukova EN, Davies CE, Hinds DJ, Hoogendoorn RM, Huseynov D, Ibrahimov B, Mamedov P, Overeem I, Rusakov GV, Suleymanova S, Svitoch AA, Vincent SJ (2005) Two deltas, two basins, one river, one sea: the modern Volga Delta an as analogue of the Neogene productive series, South Caspian Basin. In: Bhattacharya JP Giosan L (eds) River deltas—concepts, models, and examples, vol 83, pp 231–256. SEPM special publicationGoogle Scholar
  32. Lambert AM, Kelts K, Marshall NF (1976) Measurements of density underflows from Walensee, Switzerland. Sedimentology 23:87–195CrossRefGoogle Scholar
  33. Larsen D, Smith GA (1999) Sublacustrine-fan deposition in the oligocene creede formation, Colorado, USA. J Sediment Res 69:675–689CrossRefGoogle Scholar
  34. Legarreta L, Kokogian DA, Dellapé DA (1992) Estructura terciaria de la Cuenca Cuyana: ¿Cuánto de inversión tectónica? Revista de la Asociación Geológica Argentina 47:83–86Google Scholar
  35. Liu S, Yang S (2000) Upper Triassic-Jurassic sequence stratigraphy and its structural controls in the western Ordos Basin, China. Basin Res 12:1–18CrossRefGoogle Scholar
  36. López-Arbarello A, Zavattieri AM (2008) Systematic revision of Pseudobeaconia Bordas, 1944 and Mendocinichtys Whitley, 1953 (Actinopterygii “Perleidiformes”) from the Triassic of Argentina. Palaeontology 51:1025–1052CrossRefGoogle Scholar
  37. Makaske B (2001) Anastomosing rivers: a review of their classification, origin, and sedimentary products. Earth Sci Rev 53:149–196CrossRefGoogle Scholar
  38. Martin RE (1999) Taphnomy. Cambridge University Press, Melbourne, pp 110–160CrossRefGoogle Scholar
  39. Nadon GC (1994) The genesis and recognition of anastomosing fluvial deposits: data from the St. Mary River Formation, southwestern Alberta, Canada. J Sediment Res B64:451–463Google Scholar
  40. Nesossi DA (1945) Contribución al conocimiento geológico de Santa Clara. Provincias de Mendoza y San Juan (Zona limítrofe). Ph.D. Thesis. Universidad de Buenos AiresGoogle Scholar
  41. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656CrossRefGoogle Scholar
  42. Rajchl M, Ulicný D, Mach K (2008) Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: miocene of the Eber Graben, Czech Republic. Sedimentology 55:1419–1447CrossRefGoogle Scholar
  43. Rolleri EO, Criado Roqué P (1968) La Cuenca Triásica del Norte de Mendoza. Terceras Jornadas Geológicas Argentinas, Actas I:1–76Google Scholar
  44. Römer AS (1966) Las capas triásicas del “Gondwana” en la historia de la evolución de los vertebrados. Revista del Museo de Ciencias Naturales Bernardino Rivadavia, vol I, p 5. Buenos AiresGoogle Scholar
  45. Sabato L, Bertini A, Masini F, Albianelli A, Napoleone G, Pieri P (2005) The lower and middle Pleistocene geological record of the San Lorenzo lacustrine succession in the Sant’ Arcangelo Basin (southern Appennines, Italy). Quat Int 131:59–69CrossRefGoogle Scholar
  46. Soreghan MJ, Cohen AS (1996) Textural and compositional variability across littoral segments of Lake Tanganyika: the effect of asymmetric basin structure on sedimentation in large rift lakes. AAPG Bull 80:382–409Google Scholar
  47. Spalletti LA (1999) Cuencas triásicas del oeste argentino: origen y evolución. Acta Geológica Hispánica 32:29–50Google Scholar
  48. Spalletti LA (2001) Evolución de las cuencas sedimentarias. In: Artabe AE, Morel EM, Zamuner AB (eds) El Sistema Triásico en la Argentina, Fundación Museo de La Plata “Francisco Pascasio Moreno”, La Plata, pp 81–101Google Scholar
  49. Spalletti LA, Zavattieri AM (2009) El sistema lacustre de la Formación Mollar en el depocentro triásico de Santa Clara (provincia de Mendoza, Argentina). Andean Geol 36:236–263Google Scholar
  50. Stappenbeck R (1910) La Precordillera de San Juan y Mendoza. Ministerio de Agricultura de la Nación. Sección Geología, Mineralogía y Minería, Anales, vol 4, no 3, pp 1–187. Buenos AiresGoogle Scholar
  51. Stipanicic PN (1947) Estudio geológico, estratigráfico y tectónico de la Precordillera, al este del río de Los Patos en Sorocayense (San Juan). Tesis Doctoral. Universidad de Buenos Aires. Buenos Aires (Inédito)Google Scholar
  52. Stipanicic PN (1983) The Triassic of Argentina and Chile. In: Moullade M, Nairn ED (eds) The phanerozoic geology of the World II, pp 181–199. The Mesozoic, B. Elsevier, AmsterdamGoogle Scholar
  53. Stipanicic PN (2001) Antecedentes geológicos y paleontológicos. In: Artabe A, Morel E, Zamuner AB (eds) El Sistema Triásico en la Argentina. Fundación Museo de La Plata “Francisco Pascasio Moreno”, La Plata, pp 1–12Google Scholar
  54. Stipanicic PN, Zavattieri AM, Marsicano C (2002) Grupo Peñasco. In: Stipanicic PN, Marsicano C (eds) Léxico Estratigráfico de la Argentina, VIII Triásico, Asociación Geológica Argentina. Series B, vol 26, pp 210–212Google Scholar
  55. Stoner S, Holbrook J (2010) Geometric trends for floodplain lakes in high-accommodation floodplains and architecture of floodplain lake partitioning crevasse channels and splay deltas: AAPG Student Expo Article 90113, Houston, TexasGoogle Scholar
  56. Strelkov E, Alvarez L (1984) Análisis estratigráfico y evolutivo de la cuenca triásica mendocina-sanjuanina. 9º Congreso Geológico Argentino, Actas, vol 3, pp 115–130. San Carlos de BarilocheGoogle Scholar
  57. Sturm M, Matter A (1978) Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In: Matter A, Tucker M (eds) Modern and ancient lake sediments, vol 2, pp 147–168. Special Publication, International Association of SedimentologistsGoogle Scholar
  58. Tyson RV (1993) Chapter 5: palynofacies analysis. In: Jenkins DG (ed) Applied micropaleontology. Kluwer Academic Publishers, Amsterdam, pp 153–191CrossRefGoogle Scholar
  59. Volkheimer W, Melendi DL (1976) Palinomorfos como fósiles guía: técnicas del laboratorio palinológico. Revista Minera de Geología y Mineralogía, Sociedad Argentina de Minería y Geología 34:19–30Google Scholar
  60. Zavattieri AM (2002) Microfloras. In: Stipanicic PN Marsicano CA (eds) Léxico Estratigráfico de la Argentina, Volumen VIII: Triásico. Asociación Geológica Argentina, Series B, vol 26, pp 318–323Google Scholar
  61. Zavattieri AM, Batten DJ (1996) Chapter 20B. Miospores from Argentinian Triassic deposits and their potential for intercontinental correlation. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2, pp 767–778. American Association of Stratigraphic Palynologists FoundationGoogle Scholar
  62. Zavattieri AM, Mego N (2008) Palynological record of the Paso Flores Formation (Late Triassic) on the southeastern side of the Limay River, Patagonia, Argentina. Ameghiniana 45:483–502Google Scholar
  63. Zavattieri AM, Volkheimer W, Rosenfeld U (1994) Palynology and facies of the Late Triassic of Comallo (Northern Patagonia, Argentina). Zentralblatt für Geologie und Paläontologie, Teil I:133–154Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centro Científico Tecnológico Mendoza (CCT-Mendoza), Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
  2. 2.Department of GeologyUniversidad Nacional de San Juan (UNSJ), CONICETRivadaviaArgentina
  3. 3.AthensUSA

Personalised recommendations