Journal of Paleolimnology

, Volume 54, Issue 4, pp 359–377 | Cite as

Depositional modes and lake-level variability at Lake Towuti, Indonesia, during the past ~29 kyr BP

  • Hendrik VogelEmail author
  • James M. Russell
  • Sri Yudawati Cahyarini
  • Satria Bijaksana
  • Nigel Wattrus
  • Janet Rethemeyer
  • Martin Melles
Original paper


Lake Towuti (2.5°S, 121.5°E) is a long-lived, tectonic lake located on the Island of Sulawesi, Indonesia, and in the center of the Indo-Pacific warm pool (IPWP). Lake Towuti is connected with upstream lakes Matano and Mahalona through the Mahalona River, which constitutes the largest inlet to the lake. The Mahalona River Delta is prograding into Lake Towuti’s deep northern basin thus exerting significant control on depositional processes in the basin. We combine high-resolution seismic reflection and sedimentological datasets from a 19.8-m-long sediment piston core from the distal edge of this delta to characterize fluctuations in deltaic sedimentation during the past ~29 kyr BP and their relation to climatic change. Our datasets reveal that, in the present, sedimentation is strongly influenced by deposition of laterally transported sediments sourced from the Mahalona River Delta. Variations in the amount of laterally transported sediments, as expressed by coarse fraction amounts in pelagic muds and turbidite recurrence rates and cumulative thicknesses, are primarily a function of lake-level induced delta slope instability and delta progradation into the basin. We infer lowest lake-levels between ~29 and 16, a gradual lake level rise between ~16 and 11, and high lake-levels between ~11 and 0 kyr BP. Periods of highest turbidite deposition, ~26 to 24 and ~18 to 16 kyr BP coincide with Heinrich events 2 and 1, respectively. Our lake-level reconstruction therefore supports previous observations based on geochemical hydroclimate proxies of a very dry last glacial and a wet Holocene in the region, and provides new evidence of millennial-scale variations in moisture balance in the IPWP.


Hydroclimate Lake Towuti Indonesia Lake-level Depositional processes Indo-Pacific warm pool 



This research was partially supported by grants from the US National Science Foundation (NSF), the German Research Foundation (DFG, VO 1591/2-1), the German Ministry for Education and Research (BMBF, IDN 10/006) and the Swiss National Science Foundation (SNSF, 200021_153053/1). PT Vale Indonesia and the Indonesian Institute of Sciences (LIPI, Geotechnology branch) are acknowledged for logistical support during fieldwork. We would like to thank Ludvig Löwemark, an anonymous reviewer, and editors Thomas J. Whitmore and Steffen Mischke for helpful comments and suggestions, which helped improve a previous version of our manuscript. Fauzi Izmaya, Arne Kesseler, and Alexander Francke are acknowledged for help during fieldwork and Florian Boxberg, Nicole Mantke, and Valentin Nigg are acknowledged for help in the laboratory. This research was carried out with permission from the Ministry of Research and Techonology (RISTEK) of the government of Indonesia.

Supplementary material

10933_2015_9857_MOESM1_ESM.docx (775 kb)
Supplementary material 1 (DOCX 774 kb)


  1. Adams E, Schlager W, Anselmetti FS (2001) Morphology and curvature of delta slopes in Swiss lakes: lessons for the interpretation of clinoforms in seismic data. Sedimentology 48:661–679CrossRefGoogle Scholar
  2. Alin SR, Cohen AS (2003) Lake-level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracode-inferred water-depth reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 199:31–49CrossRefGoogle Scholar
  3. Anselmetti FS, Ariztegui D, DeBatist M, Gebhardt AC, Haberzettl T, Niessen F, Ohlendorf C, Zolitschka B (2009) Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology 56:873–892CrossRefGoogle Scholar
  4. Beck C (2009) Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth Sci Rev 96:327–344CrossRefGoogle Scholar
  5. Bird BW, Polisar PJ, Lei Y, Thompson LG, Yao T, Finney BP, Bain DJ, Pompeani DP, Steinman BA (2014) A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth Planet Sci Lett 399:92–102CrossRefGoogle Scholar
  6. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  7. Böhm E, Lippold J, Gutjahr M, Frank M, Blaser P, Antz B, Fohlmeister J, Frank N, Andersen MB, Deininger M (2015) Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517:73–76CrossRefGoogle Scholar
  8. Bouma AH (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Elsevier, Amsterdam, p 168Google Scholar
  9. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702CrossRefGoogle Scholar
  10. Cane M, Clement AC (1999) A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millenial timescales. Part II: global impacts. In: Peter U, Clark PU, Robert S, Webb RS, Lloyd D, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales. Geophysical monograph series, vol 112. American Geophysical Union, Washington, pp 373–383CrossRefGoogle Scholar
  11. Carolin SA, Cobb KM, Adkins JF, Clark B, Conroy JL, Lejau S, Malang J, Tuen A (2013) Varied response of Western Pacific hydrology to climate forcings over the last glacial period. Science 340:1564–1566CrossRefGoogle Scholar
  12. Chiang JCH (2009) The tropics in paleoclimate. Ann Rev Earth Planet Sci 37:263–297CrossRefGoogle Scholar
  13. Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496CrossRefGoogle Scholar
  14. Clement AC, Cane MA, Seager R (2001) An orbitally driven tropical source for abrupt climate change. J Clim 14:2369–2375CrossRefGoogle Scholar
  15. Coleman JM, Prior DB (1988) Mass wasting on continental margins. Ann Rev Earth Planet Sci 16(1):101–119CrossRefGoogle Scholar
  16. Condron A, Winsor P (2012) Meltwater routing and the Younger Dryas. Proc Natl Acad Sci 109:19928–19933CrossRefGoogle Scholar
  17. Costa KM, Russell JM, Vogel H, Bijaksana S (2015) Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 417:467–475CrossRefGoogle Scholar
  18. Dam RAC, Fluin J, Suparan P, van Der Kaars S (2001) Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr BP. Palaeogeogr Palaeoclimatol Palaeoecol 171:147–183CrossRefGoogle Scholar
  19. Dubois N, Oppo DW, Galy VV, Mohtadi M, van der Kaars S, Tierney JE, Rosenthal Y, Eglinton TI, Lückge A, Linsley BK (2014) Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat Geosci 7:513–517CrossRefGoogle Scholar
  20. Einsele G (1996) Event deposits: the role of sediment supply and relative sea-level changes—overview. Sediment Geol 104:11–37CrossRefGoogle Scholar
  21. Gasse F, Lédée V, Massault M, Fontes J-C (1989) Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342:57–59CrossRefGoogle Scholar
  22. Gilli A, Anselmetti FS, Glur L, Wirth SB (2013) Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau M (eds) Dating torrential processes on fans and cones—methods and their application for hazard and risk assessment, advances in global change research. Springer, Dordrecht, pp 225–241Google Scholar
  23. Girardclos S, Schmidt OT, Sturm M, Ariztegui D, Pugin A, Anselmetti FS (2007) The 1996 AD delta collapse and large turbidite in Lake Brienz. Mar Geol 241:137–154CrossRefGoogle Scholar
  24. Glur L, Wirth SB, Büntgen U, Gilli A, Haug GH, Schär C, Beer J, Anselmetti FS (2013) Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Nat Sci Rep 3:2770Google Scholar
  25. Golightly JP, Arancibia ON (1979) The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Can Mineral 17:719–728Google Scholar
  26. Gorsline DS, De Diego T, Nava-Sanchez EH (2000) Seismically triggered turbidites in small margin basins: Alfonso Basin, Western Gulf of California and Santa Monica Basin, California Borderland. Sed Geol 135:21–35CrossRefGoogle Scholar
  27. Haberzettl T, Fey M, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302CrossRefGoogle Scholar
  28. Haffner GD, Hehanussa PE, Hartoto D (2001) The biology and physical processes of large lakes of Indonesia: Lakes Matano and Towuti. In: Munawar M, Hecky RE (eds) The Great Lakes of the World (GLOW): food-web, health, and integrity. Backhuys Publishers, Leiden, pp 129–155Google Scholar
  29. Hall R (1996) Reconstructing Cenozoic SE Asia. In: Hall R, Blundell DJ (eds) Tectonic evolution of SE Asia, vol 106. Geological Society of London Special Publication, London, pp 153–184Google Scholar
  30. Hamilton W (1979) Tectonics of the Indonesian region. U.S.G.S. professional paper, 1078Google Scholar
  31. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59CrossRefGoogle Scholar
  32. Hilbe M, Anselmetti FS (2014) Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne, Switzerland). Sedimentology 61:1883–1907CrossRefGoogle Scholar
  33. Kadarusman A, Miyashita S, Maruyama S, Parkinson CD, Ishikawa A (2004) Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 392:55–83CrossRefGoogle Scholar
  34. Kuhnt W, Holbourn A, Xu J, Opdyke B, De Decker P, Röhl U, Mudelsee M (2015) Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene. Nat Comm 6:5916CrossRefGoogle Scholar
  35. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  36. Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264:53–64CrossRefGoogle Scholar
  37. Lehmusluoto P, Machbub B, Terangna N, Rusmiputro S, Achmad F, Boer L, Brahmana SS, Priadi B, Setiadji B, Sayuman O, Margana A (1995) National inventory of the major lakes and reservoirs in Indonesia. General limnology, FAO-FINNIDAGoogle Scholar
  38. Lindhorst K, Vogel H, Krastel S, Wagner B, Hilgers A, Zander A, Schwenk T, Wessels M, Daut G (2010) Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores. Biogeosciences 7:3531–3548CrossRefGoogle Scholar
  39. Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 k.y. monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 10:885–888CrossRefGoogle Scholar
  40. Moernaut J, Verschuren D, Charlet F, Fagot M, De Batist M (2010) The seismic stratigraphic record of lake-level fluctuations in Lake Challa: hydrological stability and change in equatorial East Africa over the last 140 kyr. Earth Planet Sci Lett 290:214–223CrossRefGoogle Scholar
  41. Mohtadi M, Oppo DW, Steinke S, Stuut J-BW, De Pol-Holz R, Hebbeln D, Lückge A (2011) Glacial to Holocene swings of the Australian–Indonesian monsoon. Nat Geosci 4:540–544CrossRefGoogle Scholar
  42. Mohtadi M, Prange M, Oppo DW, De Pol-Holz R, Merkel U, Zhang X, Steinke S, Lückge A (2014) North Atlantic forcing of tropical Indian Ocean climate. Nature 509:76–80CrossRefGoogle Scholar
  43. Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48:269–299CrossRefGoogle Scholar
  44. Mulder T, Migeon S, Savoye B, Faugères J-C (2001) Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo Mar Lett 21:86–93CrossRefGoogle Scholar
  45. Mulder T, Syvitski JPM, Migeon S, Faugères J-C, Savoye B (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar Pet Geol 20:861–882CrossRefGoogle Scholar
  46. Muto T, Steel RJ (2002) In defense of shelf-edge delta development during falling and lowstand of relative sea level. J Geol 110:421–436CrossRefGoogle Scholar
  47. Partin JW, Cobb KM, Adkins JF, Clark B, Fernandez DP (2007) Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449:452–455CrossRefGoogle Scholar
  48. Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite ∂18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480CrossRefGoogle Scholar
  49. Pierrehumbert RT (1999) Subtropical water vapor as a mediator of rapid global climate changes. In: Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales. Geophysical monograph series, vol 112. American Geophysical Union, Washington, pp 339–361CrossRefGoogle Scholar
  50. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214CrossRefGoogle Scholar
  51. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  52. Rethemeyer J, Dewald A, Fülöp R, Hajdas I, Höfle S, Patt U, Stapper B, Wacker L (2013) Status report on sample preparation facilities for 14C analysis at the new CologneAMS centre. Nucl Instrum Meth B 294:168–172CrossRefGoogle Scholar
  53. Rintelen T, Rintelen K, Glaubrecht M, Schubart CD, Herder F (2012) Aquatic biodiversity hotspots in Wallacea: the species flocks in the ancient lakes of Sulawesi, Indonesia. In: Goer DJ, Johnson KG, Richardson JE, Rosen BR, Williams LR, Williams ST (eds) Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge, pp 290–315CrossRefGoogle Scholar
  54. Russell JM, Bijaksana S (2012) The Towuti Drilling Project: paleoenvironments, biological evolution, and geomicrobiology of a Tropical Pacific lake. Sci Drill 14:68–71CrossRefGoogle Scholar
  55. Russell JM, Vogel H, Konecky BL, Bijaksana S, Huang Y, Melles M, Wattrus N, Costa K, King JW (2014) Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. Proc Natl Acad Sci 111:5100–5105CrossRefGoogle Scholar
  56. Scholz CA, Johnson TC, Cohen AS, King JW, Peck JA, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, Lyons RP, Shanahan TM, Castñeda IS, Hell CW, Forman SL, McHargue LR, Beuning KR, Gomez J, Pierson J (2007) East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proc Natl Acad Sci 104:16416–16421CrossRefGoogle Scholar
  57. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54CrossRefGoogle Scholar
  58. Siegenthaler C, Sturm M (1991) Die Häufigkeit von Ablagerungen extremer Reuss-Hochwasser. Die Sedimentationsgeschichte im Urnersee seit dem Mittelalter. In: Ursachenanalyse der Hochwasser 1987 – Ergebnisse der Untersuchungen. Mitteilungen des Bundesamtes für Wasserwirtschaft, vol 4. Bern, pp 127–139Google Scholar
  59. Spakman W, Hall R (2010) Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nat Geosci 3:562–566CrossRefGoogle Scholar
  60. Stager JC, Ryves DB, Chase BM, Pausata FSR (2011) Catastrophic drought in the Afro-Asian monsoon region during Heinrich Event 1. Science 331:1299–1302CrossRefGoogle Scholar
  61. Steinke S, Mohtadi M, Prange M, Varma V, Pittauerova D, Fischer HW (2014) Mid- to Late Holocene Australian–Indonesian summer monsoon variability. Quat Sci Rev 93:142–154CrossRefGoogle Scholar
  62. Sturm M, Siegenthaler C, Pickrill RA (1995) Turbidites and ‘homogenites’—a conceptual model of flood and slide deposits. In: Publication of IAS-16th regional meeting sedimentology, vol 22. Paris, p 140Google Scholar
  63. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F, Urgeles F, Vorren TO, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321CrossRefGoogle Scholar
  64. Tamuntuan G, Bijaksana S, King J, Russell J, Fauzi U, Maryunani K, Aufa N, Safiuddin LO (2015) Variation of magnetic properties in sediments from Lake Towuti, Indonesia, and its paleoclimatic significance. Palaeogeogr Palaeoclimatol Palaeoecol 420:163–172CrossRefGoogle Scholar
  65. Tauhid YI, Arifian J (2000) Long-term observations on the hydrological condition of Lake Towuti. J Sains Teknol Modif Cuaca 1:93–100Google Scholar
  66. Van Bemmelen RW (1970) The geology of Indonesia vol. IA: general geology of indonesia and adjacent archipelagoes, 2nd edn. Martinus Nijhoff, The Hague, p 732Google Scholar
  67. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  68. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  69. Wicaksono SA, Russell JM, Bijaksana S (2015) Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi since 53,000 yr BP. Palaeogeogr Palaeoclimatol Palaeoecol 430:47–56CrossRefGoogle Scholar
  70. Wirth SB, Girardclos S, Rellstab C, Anselmetti FS (2011) The sedimentary response to a pioneer geo-engineering project: tracking the Kander River deviation in the sediments of Lake Thun (Switzerland). Sedimentology 58:1737–1761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hendrik Vogel
    • 1
    Email author
  • James M. Russell
    • 2
  • Sri Yudawati Cahyarini
    • 3
  • Satria Bijaksana
    • 4
  • Nigel Wattrus
    • 5
  • Janet Rethemeyer
    • 6
  • Martin Melles
    • 6
  1. 1.Institute of Geological Sciences & Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceUSA
  3. 3.Research Centre for GeotechnologyIndonesian Institute of Sciences (LIPI)BandungIndonesia
  4. 4.Faculty of Mining and Petroleum EngineeringInstitut Teknologi BandungBandungIndonesia
  5. 5.Large Lakes ObservatoryUniversity of Minnesota DuluthDuluthUSA
  6. 6.Institute of Geology and MineralogyUniversity of CologneCologneGermany

Personalised recommendations