Advertisement

Journal of Paleolimnology

, Volume 54, Issue 1, pp 153–160 | Cite as

Climate-driven changes in lakes from the Peruvian Andes

  • Neal MicheluttiEmail author
  • Colin A. Cooke
  • William O. Hobbs
  • John P. Smol
Original paper

Abstract

The consequences of recent warming in the Andes have been dramatic, most iconically visualized by the rapid retreat of tropical mountain glaciers. Of all the ecosystems in the tropical Andes, lakes have received amongst the least research attention. We examined subfossil diatom and chrysophyte assemblages to chronicle recent (past ~150 years) ecological change in lakes from the Peruvian Andes. We recorded abrupt increases in planktonic diatoms and scaled chrysophytes beginning in the early 1900s. These changes are consistent with enhanced periods of thermal stratification, brought on by rising temperatures that have been documented throughout the Andes. These data indicate that ecological and likely physical limnological changes associated with Anthropocene warming are already under way in tropical high mountain lakes.

Keywords

Peruvian Andes Paleolimnology Diatoms Chrysophyte scales Climate change 

Notes

Acknowledgments

This research was funded by NSERC Discovery Awards awarded to JPS and Alexander P Wolfe (Univ Alberta), and a NGS grant to CAC. We thank Mathias Vuille for providing us with the climate data. Pedro Tapia, Alejandro Chu, Alberto Reyes assisted with field work. Helpful comments were provided by Sheri Fritz and two anonymous reviewers.

Supplementary material

10933_2015_9843_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. Aguilera X, Lazzaro X, Coronel JS (2013) Tropical high-altitude lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Photochem Photobiol Sci 12:1649–1657CrossRefGoogle Scholar
  2. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Terrestrial, algal, and siliceous indicators. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Kluwer, Dordrecht, pp 155–202CrossRefGoogle Scholar
  3. Bird BW, Abbot MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci 108:8583–8588CrossRefGoogle Scholar
  4. Catalan J, Pla S, Rieradevall M, Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes JA, Agustí-Panareda Thompson R (2002) Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J Paleolimnol 28:129–145CrossRefGoogle Scholar
  5. Catalan J, Barbieri MG, Bartumeus F, Bituší P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N, Pla S, Rieradevall M, Sorvari S, Štefková E, Stuchlík E, Ventura M (2009) Ecological thresholds in European alpine lakes. Freshw Biol 54:2494–2517Google Scholar
  6. Cooke CA, Balcomb PH, Biester H, Wolfe AP (2009) Over three millennia of mercury pollution in the Peruvian Andes. Proc Natl Acad Sci 106:8830–8834CrossRefGoogle Scholar
  7. Cremer H, Wagner B (2004) Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can J Bot 82:1744–1757CrossRefGoogle Scholar
  8. Cremer H, Wagner B, Melles M, Hubberten H-W (2001) The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87CrossRefGoogle Scholar
  9. Cross SL, Baker PA, Seltzer GO, Fritz SC, Dunbar RB (2000) A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10:21–32CrossRefGoogle Scholar
  10. Ekdahl E, Fritz SC, Baker PA, Rigsby CA, Coley K (2008) Holocene multi-decadal to millennial-scale hydrologic variability on the South American Altiplano. Holocene 18:867–876CrossRefGoogle Scholar
  11. Ginn BK, Rate M, Cumming BF, Smol JP (2010) Ecological distribution of scaled-chrysophyte assemblages from the sediments of 54 lakes in Nova Scotia and southern New Brunswick, Canada. J Paleolimnol 43:293–308CrossRefGoogle Scholar
  12. Gunkel G (2000) Limnology of an equatorial high mountain lake in Ecuador, Lago San Pablo. Limnologica 30:113–120CrossRefGoogle Scholar
  13. Gunkel G, Casalla J (2002) Limnology of an equatorial high mountain lake: Lago San Pablo, Ecuador: the significance of deep diurnal mixing for lake productivity. Limnologica 32:33–43CrossRefGoogle Scholar
  14. Hadley KR, Paterson AM, Hall RI, Smol JP (2013) Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquat Sci 75:349–360CrossRefGoogle Scholar
  15. Haig HA, Kingsbury MV, Laird KR, Leavitt PR, Laing R, Cumming BF (2013) Assessment of drought over the past two millennia using near-shore sediment cores from a Canadian boreal lake. J Paleolimnol 50:175–190CrossRefGoogle Scholar
  16. Hallstan S, Trigal C, Johansson KSL, Johnson RK (2013) The impact of climate on the geographical distribution of phytoplankton species in boreal lakes. Oecologia 173:1625–1638. doi: 10.1007/s00442-013-2708-6 CrossRefGoogle Scholar
  17. Haylock MR, Peterson TC, Alves TM, Ambrizzi T, Anunciação Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512CrossRefGoogle Scholar
  18. Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) (2011) Climate change and biodiversity in the tropical andes. Scientific Committee on Problems of the Environment (SCOPE). ISBN: 978-85-99875-05-6Google Scholar
  19. Hillyer R, Valencia B, Bush MB, Silman MR, Steinitz-Kannan M (2009) A 24,700 year paleolimnological history from the Peruvian Andes. Quat Res 71:71–82CrossRefGoogle Scholar
  20. Hobaek A, Løvik JE, Rohrlack T, Moe SJ, Grung M, Bennion H, Clarke G, Piliposyan GT (2012) Eutrophication, recovery and temperature in Lake Mjøsa: detecting trends with monitoring data and sediment records. Freshw Biol 57:1998–2014CrossRefGoogle Scholar
  21. Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot E, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 5:e10026. doi: 10.1371/journal.pone.0010026 CrossRefGoogle Scholar
  22. Hutchinson GE, Löffler H (1956) The thermal classification of lakes. In: Löffler H (ed) The limnology of tropical high-mountain lakes. Verh Internat Verein Limnol 15:176–193Google Scholar
  23. Kelly MG, Bennion H, Cox EJ, Goldsmith B, Jamieson J, Juggins S, Mann DG, Telford RJ (2005) Common freshwater diatoms of Britain and Ireland: an interactive key. Environ Agency, BristolGoogle Scholar
  24. Kittel T, Richerson PJ (1978) The heat budget of a large tropical lake, Lake Titicaca (Peru–Bolivia). Verh Internat Verein Limnol 20:1203–1209Google Scholar
  25. Löffler H (1964) The limnology of tropical high-mountain lakes. Verh Int Verein Limnol 15:176–193Google Scholar
  26. Maldonado M, Maldonado-Ocamp JA, Ortega H, Encalada AC, Carvajal-Vallejos FM, Rivadeneira JF, Acosta F, Jacobsen D, Crespo A, Rivera-Rondón CA (2011) Biodiversity in aquatic systems of the tropical Andes. In: Herzog SK, Martinez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes, Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), pp 277–294. ISBN: 978-85-99875-05-6Google Scholar
  27. Michelutti N, Wolfe AP, Cooke CA, Hobbs WO, Vuille M, Smol JP (2015) Climate change forces new ecological states in tropical Andean lakes. PLoS ONE. doi: 10.1371/journal.pone.0115338 Google Scholar
  28. Paterson AM, Cumming BF, Smol JP, Hall RI (2001) Scaled chrysophytes as indicators of water quality changes since pre-industrial times in the Muskoka-Haliburton region, Ontario, Canada. Can J Fish Aquat Sci 58:2468–2481Google Scholar
  29. Paterson AM, Cumming B, Smol JP, Hall RI (2004) Marked recent increases of colonial scaled chrysophytes in boreal lakes: implications for the management of taste and odour events. Freshw Biol 49:199–207CrossRefGoogle Scholar
  30. Pienitz R, Smol JP, Birks HJB (1995) Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J Paleolimnol 13:21–49CrossRefGoogle Scholar
  31. Rabatel A, Francou B, Soruco A, Gomez J, Caceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102CrossRefGoogle Scholar
  32. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2745Google Scholar
  33. Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. doi: 10.1098/rspb.2013.1887 CrossRefGoogle Scholar
  34. Rühland KM, Paterson AM, Smol JP (2015) Diatom assemblage responses to warming: reviewing the evidence. J Paleolimnol. doi: 10.1007/s10933-015-9837-3
  35. Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev 90:522–541. doi: 10.1111/brv.12120 CrossRefGoogle Scholar
  36. Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123:199–208CrossRefGoogle Scholar
  37. Smol JP (1995) Application of chrysophytes to problems in paleoecology. In: Sandgren C, Smol JP, Kristianse J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 302–329Google Scholar
  38. Smol JP, Douglas MSV (2007a) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474CrossRefGoogle Scholar
  39. Smol JP, Douglas MSV (2007b) Crossing the final ecological threshold in high Arctic ponds. Proc Nat Acad Sci 104:12395–12397CrossRefGoogle Scholar
  40. Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu. Accessed 17 June 2014
  41. Stansell ND, Rodbell DT, Abbott MB, Mark BG (2013) Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat Sci Rev 70:1–14CrossRefGoogle Scholar
  42. Steinitz-Kannan M (1997) The lakes in Andean protected areas of Ecuador. George Wright Forum 14:33–43Google Scholar
  43. Thibeault JM, Seth A, Garcia M (2010) Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J Geophys Res 115:D08103Google Scholar
  44. Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat M, Mikhalenko VN, Lin PN (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950. doi: 10.1126/science.1234210 CrossRefGoogle Scholar
  45. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108Google Scholar
  46. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99CrossRefGoogle Scholar
  47. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  48. Weckström J, Korhola A, Blom T (1997) Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347:171–184CrossRefGoogle Scholar
  49. Williamson CE, Saros JE, Vincent W, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Neal Michelutti
    • 1
    Email author
  • Colin A. Cooke
    • 2
  • William O. Hobbs
    • 3
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Lab (PEARL), Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Department of Environment and Sustainable Resource DevelopmentGovernment of AlbertaEdmontonCanada
  3. 3.St. Croix Watershed Research StationScience Museum of MinnesotaMarine on St. CroixUSA

Personalised recommendations