Journal of Paleolimnology

, Volume 54, Issue 1, pp 137–152 | Cite as

The history of subaquatic volcanism recorded in the sediments of Lake Kivu; East Africa

  • Kelly Ann RossEmail author
  • Martin Schmid
  • Sandra Ogorka
  • Fabrice A. Muvundja
  • Flavio S. Anselmetti
Original paper


Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and \(^{15}\hbox {N}\)-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.


XRF \(^{15}\hbox {N}\) Lake sediment Subaquatic volcanism Limnic eruption High-resolution seismic 



Fieldwork for this project was conducted on Lake Kivu with no special permissions because the study was part of a joint scientific project involving the University of Rwanda (former Kigali Institute of Science and Technology) and the Institut Supérieur Pdagogique de Bukavu (DR Congo). We would like to thank W. Versteeg, K. De Rycker, N. Pasche, C. Balagizi, and the crew of the RV Gloria for their assistance during the sampling campaign in Africa. For the sedimentary analysis back in Europe, we would like to thank A. Zwyssig, I. Brunner, C. Schubert, P. Zigah, S. Robert., M. Morellon, and J. Frigola. Furthermore, we are very grateful for the scientific discussions and intellectual support provided by A. Wüest, B. Wehrli, A. Brand, M. Hilbe, M. De Batist, J. Moernaut, L. Och, H. Vogel, and N. Dubois. We are additionally thankful for the helpful comments given by the editors J. Holmes and T. J. Whitmore, and the anonymous reviewers. Lastly, we are honoured to have worked with Gijs Nobbe for support with the geochemical and isotope analysis; whose uplifting, patient, and kind demeanour will remain in our memory. This project was financially supported by the Swiss National Science Foundation and the Swiss Agency for the Development and Cooperation under grant IZ70Z0-123923.

Supplementary material

10933_2015_9842_MOESM1_ESM.pdf (38 kb)
Supplementary material 1 (pdf 37 KB)
10933_2015_9842_MOESM2_ESM.jpg (914 kb)
Supplementary material 2 (jpg 913 KB)
10933_2015_9842_MOESM3_ESM.jpg (980 kb)
Supplementary material 3 (jpg 979 KB)


  1. Aaberg AA (2013) Warming and stratification changes in Lake Kivu, East Africa. Master’s thesis, University of MinnesotaGoogle Scholar
  2. Al-Mutlaq KF, Standley LJ, Simoneit BR (2008) Composition and sources of extractable organic matter from a sediment core in Lake Kivu. East African rift valley. Appl Geochem 23(5):1023–1040CrossRefGoogle Scholar
  3. Appleby P, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported \(^{210}\text{Pb}\) to the sediment. Catena 5(1):1–8CrossRefGoogle Scholar
  4. Borges AV, Bouillon S, Abril G, Delille B, Poirier D, Commarieu MV, Lepoint G, Morana C, Champenois W, Servais P, Descy JP, Darchambeau F (2012) Variability of carbon dioxide and methane in the epilimnion of Lake Kivu. In: Descy JP, Darchambeau F, Schmid M (eds) Lake Kivu: limnology and biogeochemistry of a tropical great lake, Springer, 4, pp 47–66Google Scholar
  5. Brown ET, Johnson TC (2005) Coherence between tropical East African and South American records of the Little Ice Age. Geochem Geophy Geosy 6(12):Q12005CrossRefGoogle Scholar
  6. Calvert S, Nielsen B, Fontugne M (1992) Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature 359:223–225CrossRefGoogle Scholar
  7. Carey S, Nomikou P, Bell KC, Lilley M, Lupton J, Roman C, Stathopoulou E, Bejelou K, Ballard R (2013) \(\text{ CO}_{2}\) degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41(9):1035–1038CrossRefGoogle Scholar
  8. Damas H (1937) La stratification thermique et chimique des lacs Kivu, Edourd et Ndalaga (Congo Belge). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 8(3):51–68Google Scholar
  9. Darchambeau F, Sarmento H, Descy JP (2014) Primary production in a tropical large lake: the role of phytoplankton composition. Sci Total Environ 473:178–188CrossRefGoogle Scholar
  10. Degens ET, Kulbicki G (1973) Hydrothermal origin of metals in some East African rift lakes. Miner Deposita 8(4):388–404CrossRefGoogle Scholar
  11. Degens ET, von Herzen RP, Wong HK, Deuser WG, Jannasch HW (1973) Lake Kivu: structure, chemistry and biology of an East African rift lake. Geol Rundsch 62(1):245–277CrossRefGoogle Scholar
  12. Felton AA, Russell JM, Cohen AS, Baker ME, Chesley JT, Lezzar KE, McGlue MM, Pigati JS, Quade J, Stager JC, Tiercelin JJ (2007) Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika. Tropical East Africa. Palaeogeogr Palaeocl 252(3):405–423CrossRefGoogle Scholar
  13. Freeth S, Rex D (2000) Constraints on the age of Lake Nyos. Cameroon. J Volcanol Geoth Res 97(1):261–269CrossRefGoogle Scholar
  14. Garcin Y, Melnick D, Strecker MR, Olago D, Tiercelin JJ (2012) East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth Planet Sc Lett 331–332:322–334CrossRefGoogle Scholar
  15. Haberyan KA, Hecky RE (1987) The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr Palaeocl 61:169–197CrossRefGoogle Scholar
  16. Hecky RE, Degens ET (1973) Late Pleistocene-Holocene chemical stratigraphy and paleolimnology of the Rift Valley lakes of Central Africa. WHOI technical report, Woods Hole Oceanographic Institution, Woods Hole, MassGoogle Scholar
  17. Johnson TC, Brown ET, McManus J, Barry S, Barker P, Gasse F (2002) A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 296(5565):113–132CrossRefGoogle Scholar
  18. Muvundja FA, Wüest A, Isumbisho M, Kaningini MB, Pasche N, Rinta P, Schmid M (2014) Modelling Lake Kivu water level variations over the last seven decades. Limnologica 47:21–33CrossRefGoogle Scholar
  19. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5200 years. Nat Geosci 5(2012):808–812CrossRefGoogle Scholar
  20. Olsen J, Anderson NJ, Leng MJ (2013) Limnological controls on stable isotope records of late-Holocene palaeoenvironment change in SW Greenland: a paired lake study. Quaternary Sci Rev 66(213):85–95CrossRefGoogle Scholar
  21. Pasche N, Dinkel C, Müller B, Schmid M, Wüest A, Wehrli B (2009) Physical and bio-geochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnol Oceanogr 54(6):1863–1873CrossRefGoogle Scholar
  22. Pasche N, Alunga G, Mills K, Muvundja F, Ryves DB, Schurter M, Wehrli B, Schmid M (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol 44(4):931–946CrossRefGoogle Scholar
  23. Pasche N, Schmid M, Vazquez F, Schubert CJ, Wüest A, Kessler JD, Pack MA, Reeburgh WS, Bürgmann H (2011) Methane sources and sinks in Lake Kivu. J Geophys Res 116(G3):G03,006Google Scholar
  24. Powers LA, Johnson TC, Werne JP, Castañeda IS, Hopmans EC, Sinninghe Damsté JS, Schouten S (2011) Organic geochemical records of environmental variability in Lake Malawi during the last 700 years, part I: the \(\text{ TEX}_{86}\) temperature record. Palaeogeogr Palaeocl 303(1):133–139CrossRefGoogle Scholar
  25. Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360Google Scholar
  26. Ross KA, Smets B, De Batist M, Hilbe M, Schmid M, Anselmetti FS (2014) Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene form the current state of Lake Kivu; East African Rift. Geomorphology 221:274–285. doi: 10.1016/j.geomorph.2014.05.010
  27. Ross KA, Gafasi A, Gashugi E, Wüest A, Schmid M (2015) Characterisation of the subaquatic groundwater discharge that maintains the permanent stratification within Lake Kivu. East Africa. PloS one 10.3:e0121217CrossRefGoogle Scholar
  28. Russell J, Johnson T (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño-Southern Oscillation variability. Geology 35(1):21–24CrossRefGoogle Scholar
  29. Russell JM, Johnson TC (2005) A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quaternary Sci Rev 24(12):1375–1389CrossRefGoogle Scholar
  30. Russell JM, Johnson TC, Kelts KR, Lærdal T, Talbot MR (2003) An 11 000-year lithostratigraphic and paleohydrologic record from equatorial Africa: Lake Edward. Uganda-Congo. Palaeogeogr Palaeocl 193(1):25–49CrossRefGoogle Scholar
  31. Sarmento H, Isumbisho M, Descy JP (2006) Phytoplankton ecology of Lake Kivu (eastern Africa). J Plankton Res 28(9):815–829CrossRefGoogle Scholar
  32. Sarmento H, Darchambeau F, Descy JP (2012) Phytoplankton of Lake Kivu. In: Descy JP, Darchambeau F, Schmid M (eds) Lake Kivu: limnology and biogeochemistry of a tropical great lake, Springer, 5, pp 67–83Google Scholar
  33. Schmid M, Wüest A (2012) Stratification, mixing and transport processes in Lake Kivu. In: Descy JP, Darchambeau F, Schmid M (eds) Lake Kivu: limnology and biogeochemistry of a tropical great lake, Springer, 2, pp 13–29Google Scholar
  34. Schmid M, Tietze K, Halbwachs M, Lorke A, McGinnis D, Wüest A (2003) How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002. Acta Vulcanol 14/15(1/2):115–122Google Scholar
  35. Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosys 6:Q07009Google Scholar
  36. Schmid M, Ross K, Wüest A (2012) Comment on an additional challenge of Lake Kivu in Central Africa-upward movement of the chemoclines by Finn Hirslund. J Limnol 71(2):330–334CrossRefGoogle Scholar
  37. Schoell M, Tietze K, Schoberth S (1988) Origin of methane in Lake Kivu (east-central Africa). Chem Geol 71(1):257–265CrossRefGoogle Scholar
  38. Smets B, Wauthier C, d’Oreye N (2010) A new map of the lava flow field of Nyamulagira (DR Congo) from satellite imagery. J Afr Earth Sci 58(5):778–786CrossRefGoogle Scholar
  39. Stager JC, Ryves D, Cumming BF, Meeker LD, Beer J (2005) Solar variability and the levels of Lake Victoria, East Africa, during the last millenium. J Paleolimnol 33(2):243–251CrossRefGoogle Scholar
  40. Stager JC, Cocquyt C, Bonnefille R, Weyhenmeyer C, Bowerman N (2009) A late holocene paleoclimatic history of Lake Tanganyika. East Africa. Quaternary Res 72(1):47–56CrossRefGoogle Scholar
  41. Stoffers P, Hecky RE (1978) Late Pleistocene-Holocene evolution of the Kivu-Tanganyika Basin. Modern Anc Lake Sediments 2:43–55CrossRefGoogle Scholar
  42. Struck U, Emeis KC, Voß M, Krom MD, Rau GH (2001) Biological productivity during sapropel S5 formation in the Eastern Mediterranean Sea: evidence from stable isotopes of nitrogen and carbon. Geochim Cosmochim Acta 65(19):3249–3266CrossRefGoogle Scholar
  43. Tazieff H (1977) An exceptional eruption: Mt. Niragongo, January 10th, 1977. B Volcanol 40(3):189–200Google Scholar
  44. Tierney JE, Mayes MT, Meyer N, Johnson C, Swarzenski PW, Cohen AS, Russell JM (2010) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3(6):422–425CrossRefGoogle Scholar
  45. Tierney JE, Smerdon JE, Anchukaitis KJ, Seager R (2013) Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493(7432):389–392CrossRefGoogle Scholar
  46. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301(5632):505–507CrossRefGoogle Scholar
  47. Verschuren D, Damsté JSS, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug GH, van Geel B, De Batist M, Barker P (2009) Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 462(7273):637–641CrossRefGoogle Scholar
  48. Vogel H, Meyer-Jacob C, Melles M, Brigham-Grette J, Andreev A, Wennrich V, Tarasov P, Rosén P (2013) Detailed insight into Arctic climatic variability during MIS 11c at Lake El’gygytgyn. NE Russia. Clim Past 9(4):1467–1479CrossRefGoogle Scholar
  49. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42:391–412Google Scholar
  50. Zeebe RE, Westbroek P (2003) A simple model for the \(\text{ CaCO}_{3}\) saturation state of the ocean: the ”Strangelove”, the ”Neritan”, and the ”Cretan” Ocean. Geochem Geophy Geosy 4:GC000538Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kelly Ann Ross
    • 1
    • 2
    Email author
  • Martin Schmid
    • 1
  • Sandra Ogorka
    • 1
  • Fabrice A. Muvundja
    • 1
    • 3
    • 4
  • Flavio S. Anselmetti
    • 1
    • 5
  1. 1.Department of Surface Waters – Research and Management EawagSwiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  2. 2.Institute of Biogeochemistry and Pollutant Dynamics ETHSwiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.Unité d’Enseignement et de Recherche en Hydrobiologie Appliquée (UERHA)Département de Biologie-Chimie Institut Supérieur Pédagogique de Bukavu (ISP Bukavu)BukavuDemocratic Republic of the Congo
  4. 4.Laboratory of Freshwater Ecology, URBE, Department of BiologyUniversity of NamurNamurBelgium
  5. 5.Institute of Geological Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland

Personalised recommendations