Journal of Paleolimnology

, Volume 53, Issue 4, pp 349–365 | Cite as

The early Miocene paleolake Manuherikia: vegetation heterogeneity and warm-temperate to subtropical climate in southern New Zealand

  • Tammo ReichgeltEmail author
  • Elizabeth M. Kennedy
  • John G. Conran
  • Dallas C. Mildenhall
  • Daphne E. Lee
Original paper


The Manuherikia Group in southern New Zealand represents terrestrial sediments associated with a large paleolake, Lake Manuherikia, formed during a period of basin subsidence in the early Miocene, ca. 18.7–15.1 Ma. Micro- and macrofloral assemblages collected throughout the Manuherikia Group were studied to derive terrestrial climate proxies, relying on leaf physiognomy (CLAMP) and taxonomic affinity (bioclimatic analysis). The assemblages were also analyzed for the component loading of the relative abundances of different leaf morphotypes and the results were interpreted in light of stratigraphic and lateral ecological variation. Independent paleoclimate proxies from a variety of depositional environments consistently indicate warm-temperate to marginally subtropical mean annual temperatures (16.5–20 °C) and high annual precipitation (1,500–2,500 mm) during the Burdigalian–Langhian of mid-latitude New Zealand. Leaf physiognomy reveals an amplified seasonal contrast in both precipitation and temperature, possibly caused by seasonal shifts in the position of the subtropical high-pressure cells and westerly wind belts, causing overcast wet winters and dry summers. Regional and local vegetation variation was most likely caused by fluctuations in lake levels, which in turn may have been affected by enhanced seasonality from short-term climate oscillations.


Paleoenvironment Mid-latitudes Floral proxies Southern hemisphere Subtropical 



Landowners Becs Calder, the Calder family and Lyle Grey are acknowledged for allowing us to do fieldwork on their land. Jon Lindqvist, Barry Douglas and Mike Pole are gratefully acknowledged for the establishment of the Kawarau River collections and sampling of the Vinegar Hill and Kawarau River sections. James Stewart, Christine McLachlan, Alice Hodgkinson, Genevieve Coffey, Benjamin Moorhouse, Jess Hillman, Josh Marden, David and Wyn Jones and the members of the Dunedin Botanical Society are acknowledged for their help in creating collections for Grey Lake and Shale Creek. We thank two anonymous reviewers and the editors for their helpful suggestions and constructive comments on the manuscript. Funding for this research was provided by a Royal Society of New Zealand Marsden grant.

Supplementary material

10933_2015_9827_MOESM1_ESM.docx (25.4 mb)
Supplementary material 1 (DOCX 25990 kb)


  1. Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the paleogene-early neogene: origin of arid-adapted floras. Bot Rev 73:31–50CrossRefGoogle Scholar
  2. Barry JM, Duff SW, MacFarlane DAB (1994) Coal resources of New Zealand, Resource information report 16. Energy and Resource Division, Ministry of CommerceGoogle Scholar
  3. Beu AG, Griffin M, Maxwell PA (1997) Opening of Drake Passage gateway and late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281:83–97CrossRefGoogle Scholar
  4. Boyden JA, Müller RD, Gurnis M, Torsvik TH, Clark JA, Turner M, Ivey-Law H, Watson RJ, Cannon JS (2011) Next-generation plate-tectonic reconstructions using GPlates. In: Keller GR, Baru C (eds) Geoinformatics: cyberinfrastructures for the solid earth sciences. Cambridge University Press, Cambridge, pp 95–114CrossRefGoogle Scholar
  5. Conran JG, Bannister JM, Lee DE (2013) Fruits and leaves with cuticle of Laurelia otagoensis sp. nov. (Atherospermataceae) from the early Miocene of Otago (New Zealand). Alcheringa 37:1–14CrossRefGoogle Scholar
  6. Contreras L, Pross J, Bijl PK, Koutsondendris A, Raine JI, van de Schootbrugge B, Brinkhuis H (2013) Early to middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica). Rev Palaeobot Palynol 197:119–142CrossRefGoogle Scholar
  7. Douglas BJ (1985) Manuherikia Group of Central Otago, New Zealand: stratigraphy, depositional systems, lignite resource assessment and exploration models. PhD Thesis, University of Otago, p 415Google Scholar
  8. Field BD, Crundwell MP, Kennett JP, King PR, Jones CM, Scott GH (2002) The early Middle Miocene paleoenvironmental setting of New Zealand. Rev Mex Cien Geol 19:242–251Google Scholar
  9. Gandolfo MA, MDC Zamaloa, Cúneo NR, Archangelsky A (2009) Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. Int J Plant Sci 170:419–428CrossRefGoogle Scholar
  10. Grande L (1984) Paleontology of the Green River formation, with a review of the fish fauna. Geol Surv Wyo Bull 63:1–333Google Scholar
  11. Greenwood DR, Moss PT, Rowett AI, Vadala AJ, Keefe RL (2003) Plant communities and climate change in southeastern Australia during the early Paleogene. Geol Soc Am Spec Pap 369:365–380Google Scholar
  12. Greenwood DR, Archibald SB, Mathewes RW, Moss PT (2005) Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Can J Earth Sci 42:167–185CrossRefGoogle Scholar
  13. Heenan PB, Smissen RD (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146:1–31CrossRefGoogle Scholar
  14. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  15. Hinojosa LF (2005) Climatic and vegetational changes inferred from Cenozoic southern South American paleofloras. Rev Geol Chile 32:95–115CrossRefGoogle Scholar
  16. Holbourn A, Kuhnt W, Lyle M, Schneider L, Romero O, Andersen N (2014) Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42:19–22CrossRefGoogle Scholar
  17. Holdgate GR, Cartwright I, Blackburn D, Wallace MW, Wagstaff BE, Chung L (2007) The Middle Miocene Yallourn coal seam—the last coal in Australia. Int J Coal Geol 70:95–115CrossRefGoogle Scholar
  18. IBM CORP (2013) IBM SPSS statistics for windows, Version 22.0. IBM Corp, ArmonkGoogle Scholar
  19. Jacques FMB, Su T, Spicer RA, Xing Y, Huang Y, Wang W, Zhou Z (2011) Leaf physiognomy and climate: Are monsoon systems different? Global Planet Change 76:56–62CrossRefGoogle Scholar
  20. Kamp PJJ, Vincent KA, Lucas KR (2014) Cenozoic paleogeography of New Zealand. In: Crampton JS, Hills SFK (eds) ‘GeoGenes V’ geology and genes V 2014: a meeting of mudstone and molecules, Wellington NZ. Geol Soc N Z Misc Pub 138:17Google Scholar
  21. Kennedy EM, Arens NC, Reichgelt T, Spicer RA, Spicer TEV, Stranks L, Yang J (2014) Deriving temperature estimates from southern hemisphere leaves. Palaeogeogr Palaeoclimatol Palaeoecol 412:80–90CrossRefGoogle Scholar
  22. Kershaw AP (1997) A bioclimatic analysis of early to middle Miocene brown coal floras, Latrobe Valley, south-eastern Australia. Aust J Bot 45:373–387CrossRefGoogle Scholar
  23. King PR (2000) Tectonic reconstructions of New Zealand: 40 Ma to the present. N Z J Geol Geophys 43:611–638CrossRefGoogle Scholar
  24. Lagabrielle Y, Goddéris Y, Donnadieu Y, Malavieille J, Suarez M (2009) The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet Sci Let 279:197–211CrossRefGoogle Scholar
  25. Lee DE, Lee WG, Mortimer N (2001) Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Aust J Bot 49:341–356CrossRefGoogle Scholar
  26. Lee DE, McDowall RM, Lindqvist JK (2007) Galaxias fossils from Miocene lake deposits, Otago, New Zealand: the earliest records of the southern hemisphere family Galaxiidae (Teleostei). J R Soc N Z 37:109–130CrossRefGoogle Scholar
  27. LENZ (2012) Land environments of New Zealand (LENZ). Landcare research NZ, LincolnGoogle Scholar
  28. Lindqvist JK, Lee DE (2009) High-frequency paleoclimate signals from Foulden Maar, Waipiata Volcanic Field, southern New Zealand: an early Miocene varved lacustrine diatomite deposit. Sediment Geol 222:98–110CrossRefGoogle Scholar
  29. Maitrepierre L, Caudmont S (2007) Atlas climatique de la Nouvelle-Calédonie. Météo-France—Direction interrégionale de Nouvelle-Calédonie et de Wallis et Futuna, p 130Google Scholar
  30. Mawbey EM, Lear CH (2013) Carbon cycle feedbacks during the Oligocene–Miocene transient glaciation. Geology 41:963–966CrossRefGoogle Scholar
  31. Mildenhall DC (1989) Summary of the age and paleoecology of the Miocene Manuherikia Group, Central Otago, New Zealand. J R Soc N Z 19:19–29CrossRefGoogle Scholar
  32. Mildenhall DC, Pocknall DT (1989) Miocene–pleistocene spores and pollen from Central Otago, South Island, New Zealand. N Z Geol Surv Paleontol Bull 59:128Google Scholar
  33. Mosbrugger V, Utescher T (1997) The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86CrossRefGoogle Scholar
  34. Nelson CS, Cooke PJ (2001) History of oceanic front development in the New Zealand sector of the Southern Ocean during the cenozoic—a synthesis. N Z J Geol Geophys 44:535–553CrossRefGoogle Scholar
  35. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  36. Pocknall DT (1989) Late eocene to early Miocene vegetation and climate history of New Zealand. J R Soc N Z 19:1–18CrossRefGoogle Scholar
  37. Pole MS (2003) New Zealand climate in the neogene and implications for global atmospheric circulation. Palaeogeogr Palaeoclimatol Palaeoecol 193:269–284CrossRefGoogle Scholar
  38. Pole MS (2014) The Miocene climate in New Zealand: estimates from paleobotanical data. Palaeontol Electron 17:27AGoogle Scholar
  39. Pole MS, Douglas BJ (1998) A quantitative palynostratigraphy of the Miocene Manuherikia Group, New Zealand. J R Soc N Z 28:405–420CrossRefGoogle Scholar
  40. Pole MS, Holden AM, Campbell JD (1989) Fossil legumes from the Manuherikia Group (Miocene), Central Otago. J R Soc N Z 19:225–228CrossRefGoogle Scholar
  41. Raine JI, Mildenhall DC, Kennedy EM (2011) New Zealand fossil spores and pollen: an illustrated catalogue. 4th edition. GNS Misc Ser 4.
  42. Raine JI, Beu AG, Boyes AF, Campbell HJ, Cooper RA, Crampton JS, Crundwell MP, Hollis CJ, Morgans HEG (2012) New Zealand geological timescale v. 2012/1. GNS Science Rep 2012/1, Lower Hutt, Institute of Geological and Nuclear SciencesGoogle Scholar
  43. Reichgelt T, Kennedy EM, Mildenhall DC, Conran JG, Greenwood DR, Lee DE (2013a) Quantitative palaeoclimate estimates for early Miocene southern New Zealand: evidence from Foulden Maar. Palaeogeogr Palaeoclimatol Palaeoecol 378:36–44CrossRefGoogle Scholar
  44. Reichgelt T, Kennedy EM, Conran JG, Lee DE (2013b) Using floral proxies to reconstruct late eocene to late Miocene terrestrial paleoclimates in southern New Zealand. In Reid CM, Wandres A (eds) Abstracts, geoscience 2013 conference, Christchurch, New Zealand. Geol Soc N Z Misc Pub 136A:76–77Google Scholar
  45. Reichgelt T, Kennedy EM, Conran JG, Lee DE (2013c) Miocene terrestrial climate of southern New Zealand from floral proxies. American Geophysical Union, Fall Meeting 2013, abstract #PP34A-03Google Scholar
  46. Rogers DE, Bibby DM (1979) A study of a New Zealand oil shale by differential thermal analysis. Thermochim Acta 30:303–310CrossRefGoogle Scholar
  47. Specht RL (1970) Vegetation. In: Leeper GW (ed) Australian environment, 4th edn. Melbourne University Press, Melbourne, pp 44–67Google Scholar
  48. Spicer RA, Herman AB, Kennedy EM (2004) Foliar physiognomic record of climatic conditions during dormancy: climate leaf analysis multivariate program (CLAMP) and the cold month mean temperature. J Geol 112:685–702CrossRefGoogle Scholar
  49. Spicer RA, Valdes PJ, Spicer TEV, Craggs HJ, Srivastrava G, Mehrotra RC, Yang J (2009) New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeogr Palaeoclimatol Palaeoecol 283:91–98CrossRefGoogle Scholar
  50. Timm O, Diaz HF (2009) Synoptic-statistical approach to regional downscaling of IPCC twenty-first-century climate projections: seasonal rainfall of the Hawaiian Islands. J Clim 22:4261–4280CrossRefGoogle Scholar
  51. Travouillon KJ, Legendre S, Archer M, Hand SJ (2009) Palaeoecological analyses of Riversleigh’s Oligo–Miocene sites: implications for Oligo–Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37CrossRefGoogle Scholar
  52. Utescher T, Bruch AA, Erdei B, François L, Ivanov D, Jacques FMB, Kern AK, Liu Y-S, Mosbrugger V, Spicer RA (2014) The coexistence approach—theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr Palaeoclimatol Palaeoecol 410:58–73CrossRefGoogle Scholar
  53. Wolfe JA (1995) Paleoclimatic estimates from tertiary leaf assemblages. Ann Rev Earth Planet Sci 23:119–142CrossRefGoogle Scholar
  54. Wolfe JA, Schorn HE, Forest CE, Molnar P (1997) Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276:1672–1675CrossRefGoogle Scholar
  55. Yang J, Spicer RA, Spicer TEV, Li C-S (2011) ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodivers Palaeoenviron 91:163–183CrossRefGoogle Scholar
  56. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tammo Reichgelt
    • 1
    Email author
  • Elizabeth M. Kennedy
    • 2
  • John G. Conran
    • 3
  • Dallas C. Mildenhall
    • 2
  • Daphne E. Lee
    • 1
  1. 1.Department of GeologyUniversity of OtagoDunedinNew Zealand
  2. 2.GNS ScienceLower HuttNew Zealand
  3. 3.Australian Centre for Evolutionary Biology and Biodiversity and Sprigg Geobiology Centre, School of Earth and Environmental SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations