Journal of Paleolimnology

, Volume 53, Issue 2, pp 233–250 | Cite as

Environmental change in subtropical South America for the last two millennia as shown by lacustrine pigments

  • Lisa Coianiz
  • Daniel Ariztegui
  • Eduardo L. Piovano
  • Andrea Lami
  • Piero Guilizzoni
  • Stefano Gerli
  • Nicolas Waldmann
Original paper


Organic matter accumulation and preservation in aquatic systems can be linked to variations in organic matter sources as well as primary productivity. These changes can be used to determine contemporaneous environmental variations in the catchment area. The source, quality and distribution of lacustrine organic matter (LOM) have been determined in a sedimentary core covering the last ~1,500 years from Laguna Mar Chiquita, a saline lake in central Argentina. Petrophysical, sedimentological and geochemical data along with results of high-resolution pigment analyses provide a unique dataset that allow characterization of both source and type of LOM. Climatically triggered changes in the Laguna Mar Chiquita catchment led to changes in the water salinity and lake trophic state that in turn influenced primary productivity and thus organic matter accumulation. Distinctive high lake water levels and associated low salinity characterize the Medieval Climatic Anomaly (MCA) as well as the last quarter of the twentieth century and beginning of the twentyfirst century. Conversely, extremely low lake levels with resulting high salinity correspond with the Little Ice Age (LIA). High-resolution sedimentary pigment analyses in these two end–members (i.e., LIA and MCA) do not indicate major changes in the structure of phototrophic communities signifying that the biota survives a large range of salinity and temperature. High lake stands (low salinity) correspond with increased primary productivity as shown by high pigment concentrations along with a decrease in authigenic carbonates and evaporites. These high lake level intervals have been previously linked to a warmer and more humid climate. Conversely, low lake levels (hyper saline waters) correlate with decreasing lake productivity and precipitation of both authigenic carbonates and evaporites. These sediments correspond to cooler intervals with a negative moisture balance. The relative similarity between LOM indicated by the pigment stratigraphy for both intervals show no clear evidence of a linkage between human impact and lake productivity. Hence, Laguna Mar Chiquita has been naturally productive even prior to agriculture expansion by the end of the twentieth century.


Subtropical South America Central Argentina Saline lake Organic matter HPLC Fossil pigments 



This research has profited from the invaluable help from the scientific staff of both the Istituto per lo Studio degli Ecosistemi (Verbania-Pallanza, Italy) and the CICTERRA (Universidad de Córdoba/CONICET, Argentina). A. Gilli from the Limnogeology Laboratory at the ETH-Zurich, Switzerland, is gratefully thanked for helping with petrophysical measurements and useful discussions. We also thank T. Adatte from the University of Lausanne, Switzerland, for Rock–Eval analyses. This work was partially funded by CONICET (PIP-11220110100759), SECYT-UNC (2012–2013), PID-2008 (Ministerio de Ciencia y Tecnología de la Provincia de Córdoba), European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No 212492: CLARIS LPB, “A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin”. The authors kindly acknowledge the thoughtful comments of two anonymous reviewers as well as Associated Editor S. Metcalfe and Chief Editor T. J. Whitmore.


  1. Abril A, Noe L, Merlo C (2010) Grupos metabólicos microbianos de la laguna Mar Chiquita (Córdoba, Argentina) y su implicancia en el ciclado de nutrientes. Ecol Austral 20:81–88Google Scholar
  2. Anderson RF, Arnold M, Nelson GEN, Ciegler A (1958) Feed supplements production, microbiological production of beta-carotene in shaken flasks. J Agric Food Chem 6:543–545CrossRefGoogle Scholar
  3. Ariztegui D, Chondrogianni C, Lami A, Guilizzoni P, Lafargue E (2001) Lacustrine organic matter and the Holocene paleoenvironmental record of lake Albano (central Italy). J Paleolimnol 26:283–292CrossRefGoogle Scholar
  4. Ariztegui D, Anselmetti FS, Gilli A, Waldmann N (2008) Late Pleistocene environmental changes in Patagonia and Tierra del Fuego—a limnogeological approach. In: Rabassa J (ed) The late cenozoic of patagonia and tierra del fuego. developments in quaternary sciences series 11. Elsevier, Amsterdam, pp 241–253CrossRefGoogle Scholar
  5. Brown SR, McIntosh HJ, Smol JP (1984) Recent paleolimnology of a meromictic lake: fossil pigments of photosynthetic bacteria. Verh Int Ver Limnol 22:1357–1360Google Scholar
  6. Bucher EH, Marcellino JA, Ferreyra CA, Molli AF (2006) Historia del Poblamiento Humano. In: Bucher EH (ed) Bañados del Rio Dulce y Laguna Mar Chiquita. Academia Nacional de Ciencias, Córdoba, pp 15–27Google Scholar
  7. Cabido M, Zak M (1999) Vegetación del norte de Cordoba. Secretaria de Agricultura, Ganadería y Recursos Renovables de Córdoba. Córdoba, ArgentinaGoogle Scholar
  8. Cohen RG (2012) Review of the biogeography of Artemia leach, 1819 (Crustacea: Anostraca) in Argentina. Int J Artemia Biol 2:9–23CrossRefGoogle Scholar
  9. Córdoba F (2012) El registro climático del Holoceno tardío en latitudes medias del SE de Sudamérica: limnogeología de las Lagunas Encadenadas del Oeste, Argentina. PhD Thesis, University of Córdoba, Argentina, p 271Google Scholar
  10. da Silva LSV, Piovano EL, Azevedo DD, de Aquino FR (2008) Quantitative evaluation of sedimentary organic matter from Laguna Mar Chiquita, Argentina. Org Geochem 39:450–464CrossRefGoogle Scholar
  11. Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biogeochemistry of plant pigments, vol 2. Academic Press, London, New York, San Francisco, pp 38–165Google Scholar
  12. Demmig B, Winter K, Kruger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218CrossRefGoogle Scholar
  13. Fonseca I, Cavalcanti A (2012) Large scale and synoptic features associated with extreme precipitation over South America: a review and case studies for the first decade of the 21st century. Atmos Res 118:27–40CrossRefGoogle Scholar
  14. Foppen FK (1971) Tables for the identification of carotenoid pigments. Chromatogr Rev 14:133–298CrossRefGoogle Scholar
  15. Fritz SC, Juggins S, Battarbee RW (1993) Diatom assemblages and ionic characterization of lakes of the northern great plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can J Fish Aquat Sci 50:1844–1856CrossRefGoogle Scholar
  16. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  17. Gilli A, Ariztegui D, Anselmetti FS, McKenzie JA, Markgraf V, Hajdas I, McCulloch RD (2005) Mid-Holocene strengthening of the southern westerlies in South America-sedimentological evidences from Lago Cardiel, Argentina (49°S). Glob Planet Change 49:75–93CrossRefGoogle Scholar
  18. Godwin T (1958) Studies in carotenogenesis. The incorporation of 14CO2, [2–14C] acetate and [2–14C] mevalonate into beta-carotene by illuminated etiolated maize seedings. Biochem J 70(4):612–617Google Scholar
  19. Guilizzoni P, Lami A (2002) Paleolimnology: use of algal pigments as indicators. In: Bitton G (ed) The encyclopedia of environmental microbiology. Wiley, New York, pp 2306–2317Google Scholar
  20. Guilizzoni P, Lami A, Ruggiu D, Bonomi G (1986) Stratigraphy of specific algal and bacterial carotenoids in the sediments of lake Varese (N. Italy). Hydrobiologia 143:321–325CrossRefGoogle Scholar
  21. Guilizzoni P, Lami A, Marchetto A (1992) Plant pigment ratios from lake-sediments as indicators of recent acidification in Alpine lakes. Limnol Oceanogr 37:1565–1569CrossRefGoogle Scholar
  22. Guilizzoni P, Lami A, Marchetto A (1993) The sediment core analyses in high altitude lakes of central Alps: comparison of three inferring-pH techniques and effect of temperature on lake acidification. Memorie dell Istituto italiano di idrobiologia. Verbania Pallanza 52:387–400Google Scholar
  23. Guilizzoni P, Marchetto A, Lami A, Oldfield F, Manca M, Belis CA, Nocentini AM, Comoli P, Jones VJ, Juggins S, Chondrogianni C, Ariztegui D, Lowe JJ, Ryves DB, Battarbee RW, Rolph TC, Massaferro J (2000) Evidence for short-lived oscillations in the biological records from the sediments of Lago Albano (central Italy) spanning the period ca. 28 to 17 k yr BP. J Paleolimnol 23:117–127CrossRefGoogle Scholar
  24. Guilizzoni P, Massaferro J, Lami A, Piovano EL, Guevara SR, Formica SM, Daga R, Rizzo A, Gerli S (2009) Palaeolimnology of lake Hess (Patagonia, Argentina): multi-proxy analyses of short sediment cores. Hydrobiologia 631:289–302CrossRefGoogle Scholar
  25. Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S (2011) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol 45:433–445CrossRefGoogle Scholar
  26. Hammer UT (1990) The effects of climate change on the salinity, water levels and biota of Canadian prairie saline lakes. Internationale Vereinigungfuer Theoretische und Angewandte Limnologie. Verhandlungen IVTLAP 24Google Scholar
  27. Hughes MK, Diaz HF (1994) Was there a ‘medieval warm period’, and if so, where and when? Clim Change 26:109–142CrossRefGoogle Scholar
  28. Hurley JP, Armstrong DE (1990) Fluxes and transformations of aquatic pigments in lake Mendota Wisconsin. Limnol Oceanogr 35(2):384–398CrossRefGoogle Scholar
  29. Kamenik C, Koinig KA, Schmidt R, Appleby PG, Dearing JA, Lami A, Thompson R, Psenner R (2000) Eight hundred years of environmental changes in a high Alpine lake (Gossenkollesee, Tyrol) inferred from sediment records. J Limnol 59:43–52CrossRefGoogle Scholar
  30. Keigwin LD (1996) The little ice age and medieval warm period in the Sargasso Sea. Science 274:1503CrossRefGoogle Scholar
  31. Lamer M (1957) The world fertilizer economy. Stanford University Press, StanfordGoogle Scholar
  32. Lami A, Marchetto A, Guilizzoni P, Giorgis A, Masaferro J (1994) Paleolinnological records of carotenoids and carbonaceous particles in sediments of some lakes in the Southern Alps. Hydrobiologia 274:57–64CrossRefGoogle Scholar
  33. Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127CrossRefGoogle Scholar
  34. Leavitt P, Findlay DL (1994) Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic lake 227, experimental lakes area, Ontario. Can J Fish Aquat Sci 51:2286–2299CrossRefGoogle Scholar
  35. Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental changes using lake sediments, vol 3. Kluwer, Dordrecht, pp 295–325CrossRefGoogle Scholar
  36. Leavitt PR, Carpenter SR, Kitchell JF (1989) Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnol Oceanogr 34:700–717CrossRefGoogle Scholar
  37. Leroy SAG, Warny S, Lahijani H, Piovano EL, Fanetti D, Berger AR (2010) The role of geosciences in the mitigation of natural disasters: five case studies. In: Beer T (ed) Geophysical hazards international year of planet earth. Springer, Berlin, pp 115–148Google Scholar
  38. Mantoura RFC, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314CrossRefGoogle Scholar
  39. Martinez DE (1995) Changes in the ionic composition of a saline lake, Mar Chiquita, province of Cordoba, Argentina. Int J Salt Lake Res 4:25–44CrossRefGoogle Scholar
  40. Matzinger A, Schmid M, Veljanoska-Sarafiloska E, Patceva S, Guseska D, Wagner B, Müller B, Sturm M, Wüest A (2007) Eutrophication of ancient lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol Oceanogr 52:338–353CrossRefGoogle Scholar
  41. McGowan SJ (2007) Pigment studies. In: Elias SA (ed) Encyclopedia of quaternary science. Royal Holloway, University of London, EghamGoogle Scholar
  42. McGowan S, Leavitt PR, Hall RI, Wolfe BB, Edwards TWD, Karst-Riddoch T, Vardy SR (2011) Interdecadal declines in flood frequency increase primary production in lakes of a northern river delta. Glob Change Biol 17(2):1212–1224CrossRefGoogle Scholar
  43. Menghi M (2006) Vegetacion. In: Bucher EH (ed) Bañados del Rio Dulce y Laguna Mar Chiquita. Academia Nacional de Ciencias, Cordoba, pp 173–189Google Scholar
  44. Miglioranza KSB, de Moreno JEA, Moreno VJ (2004) Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectuscalifornicus (CA Meyer) Sojak from a shallow lake in Argentina. Water Res 38:1765–1772CrossRefGoogle Scholar
  45. Molongoski JJ, Klug MJ (1980) Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshw Biol 10:497–506CrossRefGoogle Scholar
  46. Mon R, Gutiérrez AA (2009) The Mar Chiquita lake: an indicator of intraplate deformation in the central plain of Argentina. Geomorphology 111:111–122CrossRefGoogle Scholar
  47. Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Wanner H, Aravena J-C, Black DE, Christie DA, D’Arrigo R, Lara A, Morales M, Soliz-Gamboa C, Srur A, Urrutia R, von Gunten L (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51CrossRefGoogle Scholar
  48. Pasquini AI, Lecomte KL, Piovano EL, Depetris PJ (2006) Recent rainfall and runoff variability in central Argentina. Quat Int 158:127–139CrossRefGoogle Scholar
  49. Peñalba OC, Vargas WM (2004) Interdecadal and interannual variations of annual and extreme precipitation over central-northeastern Argentina. Int J Climatol 24:1565–1580CrossRefGoogle Scholar
  50. Pienitz R, Walker IR, Zeeb BA, Smol JP, Leavitt P (1992) Biomonitoring past salinity changes in an athalassic subarctic lake. Int J Salt Lake Res 1:91–123CrossRefGoogle Scholar
  51. Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF (2000) Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian subarctic. Holocene 10:673–686CrossRefGoogle Scholar
  52. Piovano EL, Ariztegui D, Moreira SD (2002) Recent environmental changes in Laguna Mar Chiquita (central Argentina): a sedimentary model for a highly variable saline lake. Sedimentology 49:1371–1384CrossRefGoogle Scholar
  53. Piovano EL, Ariztegui D, Bernasconi SM, McKenzie JA (2004) Stable isotopic record of hydrological changes in subtropical Laguna Mar Chiquita (Argentina) over the last 230 years. Holocene 14:525–535CrossRefGoogle Scholar
  54. Piovano EL, Villalba R, Leroy S (2006) Holocene environmental catastrophes in South America: from the lowlands to the Andes. Quat Int 158:1–3CrossRefGoogle Scholar
  55. Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and Patagonia, Argentina) during the last 13.0 Ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions, pp 323–351Google Scholar
  56. Reati GJ, Florin M, Fernandez GJ, Montes C (1996) The Laguna Mar Chiquita (Cordoba, Argentina): a little known, secularly fluctuating, saline lake. Int J Salt Lake Res 5:187–219CrossRefGoogle Scholar
  57. Recasens C, Ariztegui D, Gebhardt C, Gogorza C, Haberzettl T, Hahn A, Zolitschka B (2012) New insights into paleoenvironmental changes in Laguna PotrokAike, southern Patagonia, since the late Pleistocene: the PASADO multiproxy record. Holocene 22:1323–1335CrossRefGoogle Scholar
  58. Romero-Viana L, Keely BJ, Camacho A, Vicente E, Miracle MR (2010) Primary production in Lake La Cruz (Spain) over the last four centuries: reconstruction based on sedimentary signal of photosynthetic pigments. J Paleolimnol 43:771–786CrossRefGoogle Scholar
  59. Ryves DB, Jones VJ, Guilizzoni P, Lami A, Marchetto A, Battarbee RW, Bettinetti R, Devoy EC (1996) Late Pleistocene and Holocene environmental changes at lake Albano and lake Nemi (central Italy) as indicated by algal remains. In: Guilizzoni P, Oldfield F (eds) Palaeoenvironmental analysis of Italian crater lake and Adriatic sediments. Memorie dell’Istituto Italiano di Idrobiologia, pp 119–148Google Scholar
  60. Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol Oceanogr 51:1355–1368CrossRefGoogle Scholar
  61. Sanger JE (1988) Fossil pigments in paleoecology and paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62:343–359CrossRefGoogle Scholar
  62. Sanger JE, Gorham E (1972) Stratigraphy of fossil pigments as a guide to the postglacial history of Kirchner marsh, Minnesota. Limnol Oceanogr 17:840–854CrossRefGoogle Scholar
  63. Seckt H (1945) Estudios hidrobiológicos hechos en la Mar Chiquita. Boletín Academia Nacional de Ciencias, Córdoba 37:279–309Google Scholar
  64. Spears BM, Carvalho L, Perkins R, O’Malley MB, Paterson DM (2010) The contribution of epipelon to total sediment microalgae in a shallow temperate eutrophic loch (Loch Leven, Scotland). Hydrobiologia 646:281–293CrossRefGoogle Scholar
  65. Steinmann P, Adatte T, Lambert P (2003) Recent changes in sedimentary organic matter from lake Neuchatel (Switzerland) as traced by Rock–Eval pyrolysis. Eclogae Geol Helv 96:109–116Google Scholar
  66. Stupar YV, Schäfer J, García MG, Schmidt S, Piovano E, Blanc G, Huneau F, Le Coustumer P (2014) Historical mercury trends recorded in sediments from the Laguna del Plata, Córdoba Argentina. Chem der Erde-Geochem 74(3):353–363CrossRefGoogle Scholar
  67. Stutz S, Borel CM, Fontana SL, Tonello MS (2012) Holocene changes in trophic states of shallow lakes from the Pampa plain of Argentina. Holocene 22:1263–1270CrossRefGoogle Scholar
  68. Swain EB (1985) Measurement and interpretation of sedimentary pigments. Freshw Biol 15:53–75CrossRefGoogle Scholar
  69. Troin M, Vallet-Coulomb C, Sylvestre F, Piovano EL (2010) Hydrological modeling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J Hydrol 393:233–244CrossRefGoogle Scholar
  70. Troin M, Vallet-Coulomb C, Piovano EL, Sylvestre F (2012) Rainfall-runoff modeling of recent hydroclimatic change in a subtropical lake catchment: Laguna Mar Chiquita, Argentina. J Hydrol 475:379–391CrossRefGoogle Scholar
  71. Valero-Garcés BL, Delgado-Huertas A, Navas A, Edwards L, Schwalb A, Ratto N (2003) Patterns of regional hydrological variability in central-southern Altiplano (18–26 S) lakes during the last 500 years. Palaeogeogr Palaeoclimatol Palaeoecol 194:319–338CrossRefGoogle Scholar
  72. Vernet JP, Favarger PY (1982) Climatic and anthropogenic effects on the sedimentation and geochemistry of lakes Bourget, Annecy and Leman. Hydrobiologia 92:643–650CrossRefGoogle Scholar
  73. Villalba R (1994) Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in southern South America. Clim Change 26:183–197CrossRefGoogle Scholar
  74. Villalba R, Grosjean M, Kiefer T (2009) Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 281:175–179CrossRefGoogle Scholar
  75. Vinebrooke RD, Hall RI, Leavitt PR, Cumming BF (1998) Fossil pigments as indicators of phototrophic response to salinity and climatic change in lakes of western Canada. Can J Fish Aquat Sci 55:668–681CrossRefGoogle Scholar
  76. Whitlock C, Bianchi MM, Bartlein PJ, Markgraf V, Marlon J, Walsh M, McCoy N (2006) Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41–42.5 S) Argentina. Quat Res 66:187–201CrossRefGoogle Scholar
  77. Williams WD (1993) The worldwide occurrence and limnological significance of falling water-levels in large, permanent saline lakes. Verh Int Ver Limnol 25:980–983Google Scholar
  78. Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta DJ, Welschmeyer NA (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196CrossRefGoogle Scholar
  79. Zanor GA, Piovano EL, Ariztegui D, Vallet-Coulomb C (2012) A modern subtropical playa complex: Salina de Ambargasta, central Argentina. J S Am Earth Sci 35:10–26CrossRefGoogle Scholar
  80. Züllig H (1982) Investigations on the stratigraphy of carotenoids in stratified sediments of 10 Swiss lakes for detecting past developments of phytoplankton. Schweiz Z Hydrol 44:1–98Google Scholar
  81. Züllig H (1985) Pigmente phototrophe Bakterien in Seesedimenten und ihre Bedeuntung für die Seenforschung. Schweiz Z Hydrol 47:87–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lisa Coianiz
    • 1
    • 2
  • Daniel Ariztegui
    • 1
  • Eduardo L. Piovano
    • 3
  • Andrea Lami
    • 4
  • Piero Guilizzoni
    • 4
  • Stefano Gerli
    • 4
  • Nicolas Waldmann
    • 2
  1. 1.Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Dr. Strauss Department of Marine Geosciences, Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
  3. 3.Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET and Escuela de GeologíaUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Istituto per lo Studio degli EcosistemiCNRVerbania PallanzaItaly

Personalised recommendations