Journal of Paleolimnology

, Volume 53, Issue 3, pp 335–344 | Cite as

Reply to comment by Zhang (2014): The Shell Bar in the Qaidam Basin: fluvial or lake deposit, and OSL versus 14C age data

  • Steffen Mischke
  • David Madsen
  • Chengjun Zhang
  • Zhongping Lai

Zhang’s (2014) comments on the formation and age of the Shell Bar in the Qaidam Basin go far beyond our specific Shell Bar papers (Lai et al. 2014; Mischke et al. 2014) and include questions about a number of other lake basins in China. Although we disagree with many of Zhang’s comments about these other basins (e.g. the Qinghai Lake Basin), we cannot hope to address them all here, so we stick to several main points. First, we address specific comments about the Shell Bar, including: (1) Shell Bar sediments, (2) geomorphological history and implications, (3) Corbicula shells as a major Shell Bar constituent, and (4) OSL age data. Second, we address what is surely the more scientifically important, and as yet unsettled issue at the core of the debate, i.e. the relative reliability of OSL versus radiocarbon dating for shoreline sediments in the range from MIS 5 to early MIS 3.

Shell Bar issues

Sediments (grain size and structures)

The sediments of the Shell Bar are mostly silty to sandy...


Spring Water Wind Erosion Qaidam Basin Freshwater Clam Western Qaidam Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Xiaozhong Huang, Thomas Kasper, Shijie Li, Xingqi Liu, Stephan Opitz, Yongbo Wang and Wei Zhong who kindly provided original grain-size data for sediment cores of lakes on the Tibetan Plateau and northwestern-most China. We thank Mark Brenner for editorial improvements of the original draft. Funding was provided by the Deutsche Forschungsgemeinschaft and China NSF (41290252, 41121001, 41172168).


  1. Adams KD (2007) Late Holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA. Geol Soc Am Bull 119:126–139CrossRefGoogle Scholar
  2. An Z, Colman SM, Zhou W, Li X, Brown ET, Jull AJT, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep 2:619. doi: 10.1038/srep00619
  3. Ao H, Dekkers MJ, Wei Q, Qiang X, Xiao G (2013) New evidence for early presence of hominids in North China. Sci Rep 3:2403. doi: 10.1038/srep02403 CrossRefGoogle Scholar
  4. Böhner J (2006) General climatic controls and topoclimatic variations in central and high Asia. Boreas 35:279–295CrossRefGoogle Scholar
  5. Buylaert JP, Murray AS, Vandenberghe D, Vriend M, De Corte F, Van den Haute P (2008) Optical dating of Chinese loess using sand-sized quartz: establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quat Geochronol 3:99–113CrossRefGoogle Scholar
  6. Chang F, Zhang H, Chen Y, Niu J, Yang M, Zhang W, Lei G, Fan H (2007) Stable isotopes of carbonate and fossil shells from the Shell Bar section of the paleolake Qarhan, Qaidam Basin. Quat Sci 27:427–436 (in Chinese with English abstract)Google Scholar
  7. Chen F, Fan Y, Chun X, Madsen DB, Oviatt CG, Zhao H, Yang L, Sun Y (2008) Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary. Chin Sci Bull 53:1725–1739Google Scholar
  8. Dettman DL, Reische AK, Lohmann KC (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochim Cosmochim Acta 63:1049–1057CrossRefGoogle Scholar
  9. Fan QS (2009) Quartz optically stimulated luminescence chronology for high lake levels in the eastern Qaidam Basin, northeastern Qinghai–Tibetan Plateau since late Quaternary and its palaeoenvironmental implications. PhD thesis, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining (in Chinese with English abstract)Google Scholar
  10. Fan Q, Ma H, Cao G, Chen Z, Cao S (2012) Geomorphic and chronometric evidence for high lake level history in Gahai Lake and Toson Lake of north-eastern Qaidam Basin, north-eastern Qinghai–Tibetan Plateau. J Quat Sci 27:819–827CrossRefGoogle Scholar
  11. Fan QS, Ma HZ, Wei HC, Shan FS, An FY, Xu LM, Madsen DB (2014a) Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai–Tibetan Plateau. J Asian Earth Sci 85:202–209CrossRefGoogle Scholar
  12. Fan Q, Ma H, Ma Z, Wei H, Han F (2014b) Assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environ Earth Sci 71:1227–1237CrossRefGoogle Scholar
  13. Goudie AS (2009) Dust storms: recent developments. J Environ Manag 90:89–94CrossRefGoogle Scholar
  14. Grossman EL, Ku TL (1986) Oxygen and carbon fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74CrossRefGoogle Scholar
  15. Huang XZ, Chen FH, Fan YX, Yang ML (2009) Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quat Int 194:19–27CrossRefGoogle Scholar
  16. Janech MG, Hunter RD (1995) Corbicula fluminea in a Michigan river: implications for low temperature tolerance. Malacol Rev 28:119–124Google Scholar
  17. Kapp P, Pelletier JD, Rohrmann A, Heermance R, Russell J, Ding L (2011) Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today 21:4–10CrossRefGoogle Scholar
  18. Kasper T, Haberzettl T, Doberschütz S, Daut G, Wang J, Zhu L, Nowaczyk N, Mäusbacher R (2012) Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China). Quat Sci Rev 39:73–85CrossRefGoogle Scholar
  19. Lai Z (2010) Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. J Asian Earth Sci 37:176–185CrossRefGoogle Scholar
  20. Lai Z, Mischke S, Madsen D (2014) Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai–Tibetan Plateau. J Paleolimnol 51:197–210CrossRefGoogle Scholar
  21. Laity JE, Bridges NT (2009) Ventifacts on Earth and Mars: analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 105:202–217CrossRefGoogle Scholar
  22. Lei G, Zhang H, Zhang W, Chang F, Fan H, Yang M, Chen Y, Niu J (2007) Characteristics of grain size and sedimentation of Shell Bar section in salt lake Qarhan Qaidam Basin. Acta Sediment Sin 25:274–282 (in Chinese with English abstract)Google Scholar
  23. Leopold LB, Langbein WB (1966) River meanders. Sci Am 214:60–70CrossRefGoogle Scholar
  24. Li G, Jin M, Wen L, Zhao H, Madsen D, Liu X, Wu D, Chen F (2014) Quartz and K-feldspar optical dating chronology of eolian sand and lacustrine sequence from the southern Ulan Buh Desert, NW China: implications for reconstructing late Pleistocene environmental evolution. Palaeogeogr Palaeoclimatol Palaeoecol 393:111–121CrossRefGoogle Scholar
  25. Lister GS, Kelts K, Chen K, Yu J, Niessen F (1991) Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84:141–162CrossRefGoogle Scholar
  26. Liu X, Shen J, Wang S, Wang Y, Liu W (2007) Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chin Sci Bull 52:539–544CrossRefGoogle Scholar
  27. Liu X, Herzschuh U, Shen J, Jiang Q, Xiao X (2008) Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res 70:412–425CrossRefGoogle Scholar
  28. Lowenstein TK, Spencer RJ, Zhang P (1989) Origin of ancient potash evaporites: clues from the modem nonmarine Qaidam Basin of western China. Science 245:1090–1092CrossRefGoogle Scholar
  29. Lucy FE, Karatayev AY, Burlakova LE (2012) Predictions for the spread, population density, and impacts of Corbicula fluminea in Ireland. Aquat Invasions 7:465–474CrossRefGoogle Scholar
  30. Madsen DB, Chen F, Oviatt CG, Yan Z, Brantingham PJ, Elston RG, Bettinger RL (2003) Late Pleistocene/Holocene wetland events recorded in southeast Tengger Desert lake sediments, NW China. Chin Sci Bull 48:1–7CrossRefGoogle Scholar
  31. Madsen DB, Lai ZP, Sun YJ, Rhode D, Liu XJ, Brantingham PJ (2014) Late Quaternary Qaidam lake histories and implications for an MIS 3 ‘‘Greatest Lakes’’ period in northwest China. J Paleolimnol 51:161–177. doi: 10.1007/s10933-012-9662-x
  32. McMahon RF (1979) Response to temperature and hypoxia in the oxygen consumption of the introducted Asiatic freshwater clam Corbicula fluminea (Müller). Comp Biochem Physiol 63:383–388CrossRefGoogle Scholar
  33. McMahon RF (1999) Invasive characteristics of the freshwater bivalve Corbicula fluminea. In: Claudi R, Leach JH (eds) Nonindigenous freshwater organisms: vectors, biology, and impacts. CRC Press, Boca Raton, pp 315–343Google Scholar
  34. Mischke S, Lai Z, Zhang C (2014) Re-assessment of the paleoclimate implications of the Shell Bar in the Qaidam Basin, China. J Paleolimnol 51:179–195CrossRefGoogle Scholar
  35. Morgan DE, Keser M, Swenarton JT, Foertch JF (2003) Population dynamics of the Asian clam, Corbicula fluminea (Müller) in the lower Connecticut River: establishing a foothold in New England. J Shellfish Res 22:193–203Google Scholar
  36. Müller O, Baur B (2011) Survival of the invasive clam Corbicula fluminea (Müller) in response to winter water temperature. Malacologia 53:367–371CrossRefGoogle Scholar
  37. Opitz S, Wünnemann B, Aichner B, Dietze E, Hartmann K, Herzschuh U, IJmker J, Lehmkuhl F, Li S, Mischke S, Plotzki A, Stauch G, Diekmann B (2012) Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 337–338:159–176CrossRefGoogle Scholar
  38. Pigati JS, Quade J, Shanahan TM, Haynes CVJ (2004) Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona, USA. Palaeogeogr Palaeoclimatol Palaeoecol 204:33–45CrossRefGoogle Scholar
  39. Pigati JS, Quade J, Wilson J, Jull AJT, Lifton NA (2007) Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40–60 ka) samples. Quat Int 166:4–14CrossRefGoogle Scholar
  40. Pigati JS, McGeehin JP, Muhs DR, Bettis EA III (2013) Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quat Sci Rev 76:114–128CrossRefGoogle Scholar
  41. Pu Y, Zhang HC, Lei GL, Chang FQ, Yang MS, Zhang WX, Lei YB, Yang LQ, Pang YZ (2010) Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3. Sci China Earth Sci 53:863–870CrossRefGoogle Scholar
  42. Pullen A, Kapp P, McCallister AT, Chang H, Gehrels GE, Garzione CN, Heermance RV, Ding L (2011) Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39:1031–1034CrossRefGoogle Scholar
  43. Rakovan MT, Rech JA, Pigati JS, Nekola JC, Wiles GC (2013) An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA. Geomorphology 193:47–56CrossRefGoogle Scholar
  44. Rech JA, Pigati JS, Lehmann SB, McGimpsey CN, Grimley DA, Nekola JC (2011) Assessing open-system behavior of 14C in terrestrial gastropod shells. Radiocarbon 53:325–335Google Scholar
  45. Reheis MC, Adams KD, Oviatt CG, Bacon SN (2014) Pluvial lakes in the Great Basin of the western United States: a view from the outcrop. Quat Sci Rev 97:33–57CrossRefGoogle Scholar
  46. Rohrmann A, Heermance R, Kapp P, Cai F (2013) Wind as the primary driver of erosion in the Qaidam Basin, China. Earth Planet Sci Lett 374:1–10CrossRefGoogle Scholar
  47. Shanahan TM, Pigati JS, Dettman DL, Quade J (2005) Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochim Cosmochim Acta 69:3949–3966CrossRefGoogle Scholar
  48. Shen J, Liu X, Wang S, Matsumoto R (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int 136:131–140CrossRefGoogle Scholar
  49. Shen H, Li S, Yu S, Yao S (2007) Grain-size characteristics of sediments from the Zigetang Co Lake, Tibetan Plateau and their implication. Quat Sci 27:613–619 (in Chinese with English abstract)Google Scholar
  50. Tang Y, You Y, Li Y (1981) Several Paleolithic and early Pleistocene mammalian localities in Yangyuan and Yuxian Counties, Hebei Province. Vertebr PalAsiat 19:256–267Google Scholar
  51. Vengosh A, Chivas AR, Starinsky A, Kolodny Y, Zhang B, Zhang P (1995) Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chem Geol 120:135–154CrossRefGoogle Scholar
  52. Wan H, Tang L, Zhang H, Li C, Pang Y (2008) Pollen record reflects climate changes in eastern Qaidam Basin during 36–18 ka B.P. Quat Sci 28:112–121 (In Chinese with English abstract)Google Scholar
  53. Wang Y, Liu X, Yang X, Zhang E, Matsumoto R (2008) A 4000-year moisture evolution recorded by sediments of Lake Kusai in the Hoh Xil area, northern Tibetan Plateau. J Lake Sci 20:605–612Google Scholar
  54. Wang NA, Li ZL, Cheng HY, Li Y, Huang YZ (2011) High lake levels on Alashan Plateau during the Late Quaternary. Chin Sci Bull 56:1367–1377Google Scholar
  55. Webb GE, Price GJ, Nothdurft LD, Deer L, Rintoul L (2007) Cryptic meteoric diagenesis in freshwater bivalves: implications for radiocarbon dating. Geology 37:803–806CrossRefGoogle Scholar
  56. Xue J, Zhong W, Zhao Y, Peng X (2008) Holocene abrupt climate shifts and mid-Holocene drought intervals recorded in Barkol Lake of northern Xinjiang of China. Chin Geograph Sci 18:54–61CrossRefGoogle Scholar
  57. Yan H, Lee X, Zhou H, Cheng H, Peng Y, Zhou Z (2009) Stable isotope composition of the modern freshwater bivalve Corbicula fluminea. Geochem J 43:379–387CrossRefGoogle Scholar
  58. Yang Z, Tong C, Lu J (2006) Characteristics of macrobenthic fauna communities in three successional stages of the new emergent salt marsh in an estuary of the Yangtze River. Zool Res 27:411–418Google Scholar
  59. Zhang C, Mischke S (2009) A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quat Sci Rev 28:1970–1983CrossRefGoogle Scholar
  60. Zhang HC, Ming QZ, Lei GL, Zhang WX, Fan HF, Chang FQ, Wünnemann B (2006) Dilemma of dating on lacustrine deposits in an hyperarid inland basin of NW China. Radiocarbon 48:219–226Google Scholar
  61. Zhang HC, Fan HF, Chang FQ, Zhang WX, Lei GL, Yang MS, Lei YB, Yang LQ (2008a) AMS dating on the shell bar section from Qaidam Basin, NE Tibetan Plateau, China. Radiocarbon 50:255–265Google Scholar
  62. Zhang H, Wang Q, Peng J, Chen G (2008b) Ostracod assemblages and their paleoenvironmental significance from shell bar section of paleolake Qarhan, Qaidam Basin. Quat Sci 28:103–109 (In Chinese with English abstract)Google Scholar
  63. Zhang K, Wang G, Ji J, Luo M, Kou X, Wang Y, Xu Y, Chen F, Chen R, Song B, Zhang J, Liang Y (2010) Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai–Tibet Plateau and their response to uplift of the plateau. Sci China Earth Sci 53:1271–1294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Steffen Mischke
    • 1
    • 2
  • David Madsen
    • 3
  • Chengjun Zhang
    • 4
  • Zhongping Lai
    • 5
  1. 1.Faculty of Earth SciencesUniversity of IcelandReykjavíkIceland
  2. 2.Institute of Earth and Environmental ScienceUniversität PotsdamPotsdam-GolmGermany
  3. 3.MOE Key Laboratory of Western China’s Environmental Systems, Research School of Arid Environment and Climate ChangeLanzhou UniversityLanzhouChina
  4. 4.School of Earth Sciences and Key Laboratory of Mineral Resources in Western ChinaLanzhou UniversityLanzhouChina
  5. 5.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations