Journal of Paleolimnology

, Volume 53, Issue 1, pp 35–45 | Cite as

Oxygen isotope analysis of multiple, single ostracod valves as a proxy for combined variability in seasonal temperature and lake water oxygen isotopes

  • Yama Dixit
  • David A. Hodell
  • Rajiv Sinha
  • Cameron A. Petrie
Original paper

Abstract

Paleoclimate studies in lakes typically use oxygen isotopic ratios in samples that consist of multiple ostracod specimens, to obtain an average δ18O value that reflects the mean temperature and δ18O of lake water over the life spans of the combined individuals measured. This approach overlooks potential information on seasonal climate variability that is recorded in the single valves of short-lived ostracods. Here we estimate seasonal variability in ostracod δ18O by measuring 10–30 individual carapaces of Cyprideis torosa in selected stratigraphic levels of a sediment core from paleolake Riwasa in Haryana, India. The mean δ18O values of ostracod populations show a general decrease from 9.6 to 8.3 kyr BP, which was interpreted previously as resulting from strengthening of the Indian summer monsoon during the early Holocene. The δ18O measurements of single ostracods within samples show a large range (up to ~15 ‰) and standard deviation (up to ±3.3), suggesting high seasonal variability in the hydrology of this playa lake. The great variability is ascribed to changes in both seasonal temperature (16 °C) and δ18O of lake water in a drying water body. The latter is attributable to the Rayleigh distillation process, described using a Craig–Gordon model for isotopic fractionation during evaporation from an open water body. Our results suggest that the range of δ18O values measured in single ostracod carapaces is useful to evaluate seasonal changes in lake temperature and hydrology. Even with great intra-sample δ18O variability, however, the mean δ18O of multiple (more than 10) ostracods can be used to infer long-term climate trends.

Keywords

Single ostracod Paleolake Oxygen isotopes Indian summer monsoon 

Notes

Acknowledgments

This work was supported by the Natural Environment Research Council (NE/H011463/1). Yama Dixit was funded by the Gates Cambridge Trust and Learning and Research Funds from St. John’s College, Cambridge. We thank Mike Hall, James Rolfe and Jeannie Booth for analytical assistance. Many thanks to Prof. R. N. Singh, (BHU), Vikas Pawar and Sandeep Mallik for logistical field support. Ajit Singh helped with sediment core sampling. Thanks also to Thomas Guilderson for AMS radiocarbon dating at the Center for Accelerator Mass Spectrometry (CAMS), Lawrence Livermore National Laboratory (California, USA) and Ayan Bhowmik for helpful discussions.

References

  1. Anadón P, Deckker P, Julià R (1986) The Pleistocene lake deposits of the NE Baza Basin (Spain): salinity variations and ostracod succession. Hydrobiologia 143:199–208. doi:10.1007/BF00026662 CrossRefGoogle Scholar
  2. Anand P, Kroon D, Singh A, Ganeshram R, Ganssen G, Elderfield H (2008) Coupled sea surface temperature–seawater δ 18 O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography. doi:10.1029/2007PA001564 Google Scholar
  3. Bhattacharya S, Gupta S, Krishnamurthy R (1985) Oxygen and hydrogen isotopic ratios in groundwaters and river waters from India. Proc Indian Acad Sci Earth Planet Sci 94:283–295CrossRefGoogle Scholar
  4. Cai Y, Zhang H, Cheng H, Zhisheng A, Edwards LR, Wang X, Tan L, Liang F, Wang J, Kelly M (2012) The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet Sci Lett 335–336:135–144. doi:10.1016/j.epsl.2012.04.035 CrossRefGoogle Scholar
  5. Chivas AR, Deckker P, Shelley JMG (1986) Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143:135–142. doi:10.1007/BF00026656 CrossRefGoogle Scholar
  6. Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Lab. Geologia Nucleare, Pisa, pp 9–130Google Scholar
  7. Darling WG, Bath AH, Gibson JJ, Rozanski K (2006) Isotopes in water. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Dordrecht, pp 1–66CrossRefGoogle Scholar
  8. Decrouy L, Vennemann TW, Ariztegui D (2011) Controls on ostracod valve geochemistry: Part 2. Carbon and oxygen isotope compositions. Geochim Cosmochim Acta 75:7380–7399. doi:10.1016/j.gca.2011.09.008 CrossRefGoogle Scholar
  9. DeDeckker P (1983) Notes on the ecology and distribution of non-marine ostracods in Australia. Hydrobiologia 106:223–234. doi:10.1007/BF00008120 CrossRefGoogle Scholar
  10. Dixit Y, Hodell DA, Petrie CA (2014a) Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology 42:339–342CrossRefGoogle Scholar
  11. Dixit Y, Hodell DA, Sinha R, Petrie CA (2014b) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23. doi:10.1016/j.epsl.2014.01.026 CrossRefGoogle Scholar
  12. Durazzi JT (1977) Stable isotopes in the ostracod shell: a preliminary study. Geochim Cosmochim Acta 41:1168–1170. doi:10.1016/0016-7037(77)90113-2 CrossRefGoogle Scholar
  13. Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geological materials by coulometric titration. Chem Geol 53:125–128. doi:10.1016/0009-2541(85)90025-7 CrossRefGoogle Scholar
  14. Escobar J, Curtis J, Brenner M, Hodell DA, Holmes JA (2010) Isotope measurements of single ostracod valves and gastropod shells for climate reconstruction: evaluation of within-sample variability and determination of optimum sample size. J Paleolimnol 43:921–938. doi:10.1007/s10933-009-9377-9 CrossRefGoogle Scholar
  15. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739. doi:10.1126/science.1083130 CrossRefGoogle Scholar
  16. Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry: vol 2, the terrestrial environment. Elsevier, Amsterdam, pp 113–168Google Scholar
  17. Haslett J (2001) P. Cebon, U. Dahinden, H. C. Davies, D. Imboden, C. C. Jaeger (eds.), Views from the Alps: regional perspectives on climate change. Clim Chang 51:243–247. doi:10.1023/A:1012284328353
  18. Heaton THE, Holmes JA, Bridgwater ND (1995) Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. Holocene 5:428–434CrossRefGoogle Scholar
  19. Heip C (1976) The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). Oecologia 24:229–245. doi:10.1007/BF00345475 CrossRefGoogle Scholar
  20. Herman PMJ, Heip C, Vranken G (1983) The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracoda). Oecologia 58:326–331. doi:10.2307/4217039 CrossRefGoogle Scholar
  21. Hodell DA, Brenner M, Kanfoush SL, Curtis JH, Stoner JS, Song X, Yuan W, Whitmore TJ (1999) Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quat Res 52:369–380. doi:10.1006/qres.1999.2072 CrossRefGoogle Scholar
  22. Holmes JA (2008) Sample-size implications of the trace-element variability of ostracod shells. Geochim Cosmochim Acta 72:2934–2945. doi:10.1016/j.gca.2008.03.020 CrossRefGoogle Scholar
  23. Horne DJ, Cohen A, Martens K (2002) Taxonomy, morphology and biology of quaternary and living Ostracoda. In: Holmes JA, Chivas A (eds) The Ostracoda: applications in quaternary research, AGU geophysical monograph series 131. Washington, pp 5–36Google Scholar
  24. Indian Meteorological Department (1901–2000) Climatological tables of observatories in India: New Delhi. http://www.imd.gov.in/doc/climateimp.pdf
  25. Jones MD, Leng MJ, Eastwood WJ, Keen DH, Turney CSM (2002) Interpreting stable-isotope records from freshwater snail-shell carbonate: a Holocene case study from Lake Gölhisar, Turkey. Holocene 12:629–634CrossRefGoogle Scholar
  26. Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. J Chim Phys 68:1423–1436Google Scholar
  27. Marco-Barba J, Ito E, Carbonell E, Mesquita-Joanes F (2012) Empirical calibration of shell chemistry of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda). Geochim Cosmochim Acta 93:143–163. doi:10.1016/j.gca.2012.06.019 CrossRefGoogle Scholar
  28. Mezquita F, Roca JR, Reed JM, Wansard G (2005) Quantifying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeogr Palaeocl 225:93–117. doi:10.1016/j.palaeo.2004.02.052
  29. Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian Monsoon over the last 18 000 years. Clim Dyn 12:213–225. doi:10.1007/BF00211619 CrossRefGoogle Scholar
  30. Pang H, He Y, Zhang Z, Lu A, Gu J (2004) The origin of summer monsoon rainfall at New Delhi by deuterium excess. Hydrol Earth Syst Sci Discuss 8:115–118CrossRefGoogle Scholar
  31. Pérez L, Curtis J, Brenner M, Hodell DA, Escobar J, Lozano S, Schwalb A (2013) Stable isotope values (δ18O and δ13C) of multiple ostracode species in a large Neotropical lake as indicators of past changes in hydrology. Quat Sci Rev 66:96–111CrossRefGoogle Scholar
  32. Saini HS, Tandon SK, Mujtaba SAI, Pant NC (2005) Lake deposits of the northeastern margin of Thar Desert: Holocene(?) palaeoclimatic implications. Curr Sci 88:1994–2000Google Scholar
  33. Schulz H, von Rad U, Erlenkeuser H, von Rad U (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57. doi:10.1038/31750 Google Scholar
  34. Schwalb A, J. Burns S, Cusminsky G Kelts K, Markgraf V (2002) Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 187:323–339. doi: 10.1016/S0031-0182(02)00484-4
  35. Shackleton N (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Cent Nat Rech Sci Colloq Int 219:203–209Google Scholar
  36. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857. doi:10.1126/science.1106296 CrossRefGoogle Scholar
  37. Xia J, Engstrom DR, Ito E (1997) Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geochim Cosmochim Acta 61:383–391. doi:10.1016/S0016-7037(96)00354-7 CrossRefGoogle Scholar
  38. Yadav DN (1997) Oxygen isotope study of evaporating brines in Sambhar Lake, Rajasthan (India). Chem Geol 138:109–118. doi:10.1016/S0009-2541(96)00154-4 CrossRefGoogle Scholar
  39. Zhang J, Chen F, Holmes JA, Li H, Guao X, Wang J, Li S, Lu Y, Zhao Y, Qiang M (2011) Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quat Sci Rev 30:1973–1987. doi:10.1016/j.quascirev.2011.04.023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yama Dixit
    • 1
  • David A. Hodell
    • 1
  • Rajiv Sinha
    • 2
  • Cameron A. Petrie
    • 3
  1. 1.Godwin Laboratory for Palaeoclimate Research, Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Department of Civil EngineeringIndian Institute of TechnologyKanpurIndia
  3. 3.Department of Archaeology and AnthropologyUniversity of CambridgeCambridgeUK

Personalised recommendations