Advertisement

Journal of Paleolimnology

, Volume 51, Issue 4, pp 469–483 | Cite as

A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps)

  • J.-P. JennyEmail author
  • B. Wilhelm
  • F. Arnaud
  • P. Sabatier
  • C. Giguet Covex
  • A. Mélo
  • B. Fanget
  • E. Malet
  • E. Ployon
  • M. E. Perga
Original paper

Abstract

A high-resolution sedimentological study of Lake Bourget was conducted to reconstruct the flood frequency and intensity (or magnitude) in the area over the last 350 years. Particular emphasis was placed on investigating the spatio-temporal distribution of flood deposits in this large lake basin. The thicknesses of deposits resulting from 30 flood events of the Rhône River were collected over a set of 24 short sediment cores. Deposit thicknesses were compared with instrumental data for the Rhône River discharge for the period from 1853 to 2010. The results show that flood frequency and intensity cannot be reliably reconstructed from a single core because of the inhomogeneous flood-deposit geometry in such a large lake. From all documented flood-deposit thicknesses, volumes of sediment brought into the lake during each flood event were computed through a Kriging procedure and compared with the historical instrumental data. The results show, in this study, that reconstructed sediment volumes are well correlated to maximal flood discharges. This significant correlation suggests that the increase of embankment and dam settlements on the Rhône River during the last 150 years has not significantly affected the transport of the smallest sediment fraction during major flood events. Hence, assessment of the flood-sediment volumes deposited in the large Lake Bourget is the only way to reliably reconstruct the flood frequency and intensity.

Keywords

Flood intensity and frequency Sediment distribution Fluvial discharge Human activity 

Notes

Acknowledgments

The authors are grateful to Grégoire Ledoux, CEN Université Laval, Québec, for providing the bathymetric map; to Jean-Paul Bravard for helpful suggestions; to Fayçal Soufi, EDYTEM, for help in making the thin sections; and to Cécile Pignol for help in the laboratory. This work was funded by the French National Research Agency (ANR) through research programs “IPER-Rétro” (ANR-08-VUL 005) and “PYGMALION” (ANR-07-BLAN-0133). J.P. Jenny benefited from a PhD joint grant of the ANR Iper-Rétro and from the Assemblée des Pays de Savoie. Bruno Wilhelm benefited from a PhD joint grant of the Communauté de Commune du Grésivaudan and the Assemblée des Pays de Savoie. This research also benefited from a grant from the Laboratory of Excellence (LABEX) ITEM in the framework of the research program “CrHistAl – Crue Historiques dans les Alpes”.

References

  1. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232CrossRefGoogle Scholar
  2. Arnaud F, Revel M, Chapron E, Desmet M, Tribovillard N (2005) 7200 years of Rhône river flooding activity in Lake Le Bourget, France: a high-resolution sediment record of NW Alps hydrology. Holocene 15:420–428CrossRefGoogle Scholar
  3. Arnaud F, Révillon S, Debret M, Revel M, Chapron E, Jacob J, Giguet-Covex C, Poulenard J, Magny M (2012) Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quat Sci Rev 51:81–92CrossRefGoogle Scholar
  4. Bengtsson L, Hodges KI (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  5. Bravard JP (1987) Le Rhône du Léman à Lyon. J Alpine Res 75:89–91Google Scholar
  6. Campbell C (1998) Late holocene lake sedimentology and climate change in Southern Alberta, Canada. Quat Res 49:96–101CrossRefGoogle Scholar
  7. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  8. CEMAGREF (2000) Revisiter la notion de scénario hydrologique de référence pour la caractérisation du risque d’inondation. PhD Thesis, Université Joseph Fourier Grenoble, p 228Google Scholar
  9. Champion M (1839) Les inondations en France depuis le VIe siècle jusqu’a nos jours. V. DalmontGoogle Scholar
  10. Chapron E, Beck C, Pourchet M, Deconinck J (1999) 1822 earthquake-triggered homogenite in Lake Le Bourget (NW Alps). Terra Nova 11:86–92CrossRefGoogle Scholar
  11. Chapron E, Desmet M, De Putter T, Loutre MF, Beck C, Deconinck JF (2002) Climatic variability in the northwestern Alps, France, as evidenced by 600 years of terrigenous sedimentation in Lake Le Bourget. Holocene 12:177–185CrossRefGoogle Scholar
  12. Chapron E, Arnaud F, Noël H, Revel M, Desmet M, Perdereau L (2005) Rhône River flood deposits in Lake Le Bourget: a proxy for Holocene environmental changes in the NW Alps, France. Boreas 34:404–416CrossRefGoogle Scholar
  13. Cholley A (1925) Le régime et les crues du Rhône. Annales Géographie 34:454–461CrossRefGoogle Scholar
  14. Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806CrossRefGoogle Scholar
  15. Czymzik M, Dulski P, Plessen B, Grafenstein U von, Naumann R, Brauer A (2010) A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Res 46:16Google Scholar
  16. Debret M, Chapron E, Desmet M, Rolland-Revel M, Magand O, Trentesaux A, Bout-Roumazeille V, Nomade J, Arnaud F (2010) North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France. Quat Sci Rev 29:2185–2200CrossRefGoogle Scholar
  17. Delaygue G, Bard E (2011) An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim Dyn 36:2201–2218CrossRefGoogle Scholar
  18. Doutriaux E (2008) Est-il possible d’utiliser les ouvrages de la CNR pour abaisser les niveaux d’eau. In: Le Rhône en 100 questions, BRAVARD J.-P., CLEMENS, A., Editors, GRAIE, Villeurbanne, France, pp 52–55Google Scholar
  19. Doutriaux E, Couvert B (2008) Les sédiments s’accumulent-ils dans les aménagements hydroélectriques du Rhône. In: Le Rhône en 100 questions, BRAVARD J.-P., CLEMENS, A., Editors, GRAIE, Villeurbanne, France, pp 52–55Google Scholar
  20. Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the alpine region. J Clim 14:1568–1584CrossRefGoogle Scholar
  21. Giguet-Covex C, Arnaud F, Poulenard J, Enters D, Reyss J-L, Millet L, Lazzaroto J, Vidal O (2010) Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. J Paleolimnol 43:171–190CrossRefGoogle Scholar
  22. Giguet-Covex C, Arnaud F, Enters D, Poulenard J, Millet L, Francus P, David F, Rey P-J, Wilhelm B, Delannoy J-J (2012) Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne). Quat Res 77:12–22CrossRefGoogle Scholar
  23. Gilli A, Anselmetti FS, Ariztegui D, McKenzie JA (2003) A 600-year sedimentary record of flood events from two sub-alpine lakes (Schwendiseen, Northeastern Switzerland). Eclogae Geol Helv 96:49–58Google Scholar
  24. Gilli A, Anselmetti FS, Glur L, Wirth SB (2013) Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones. Springer, Netherlands, pp 225–242CrossRefGoogle Scholar
  25. Girardclos S, Baster I, Wildi W, Pugin A, Rachoud- Schneider A-M (2003) Bottom-current and wind-pattern changes as indicated by Late Glacial and Holocene sediments from western Lake Geneva (Switzerland). Eclog Geolog Helvetiae 96(suppl. 1):39–48Google Scholar
  26. Giuliani Y, Bravard J-P, Klingeman PC (1994) Morphodynamic impacts on a river affected by a hydro-electric diversion scheme: the Rhône in the Chautagne region of France. Rev Géogr Lyon 69:73–87CrossRefGoogle Scholar
  27. Hurrel JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitations. Science 269:676–679CrossRefGoogle Scholar
  28. Ito T, Iwamoto H, Kamiya K, Fukushima T, Kumon F (2010) Use of flood chronology for detailed environmental analysis: a case study of Lake Kizaki in the northern Japanese Alps, central Japan. Environ Earth Sci 60:1607–1618CrossRefGoogle Scholar
  29. Jenny JP, Arnaud F, Dorioz JM, Giguet Covex C, Frossard C, Sabatier P, Millet L, Reyss JL, Tachikawa K, Bard E, Pignol C, Perga ME (2013) A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnol Oceanogr 58(4):1395–1408Google Scholar
  30. IPCC, Kostaschuck RA, MacDonald GM (2007) (Intergovernmental Panel on Climate Change) (2007) Climate change 2007—the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  31. Lapointe F, Francus P, Lamoureaux SF, Saïd M, Cuven S (2012) 1,750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada. J Paleolimnol 48(1):159–173CrossRefGoogle Scholar
  32. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124CrossRefGoogle Scholar
  33. Magny M, Bégeot C, Guiot J, Peyron O (2003) Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quat Sci Rev 22:1589–1596CrossRefGoogle Scholar
  34. Merz R, Blöschl G (2003) Regional flood risk—what are the driving processes? Hydrological Risk, Management and Development, IAHS Publ 281:49–58Google Scholar
  35. Mulder T, Chapron E (2011) Flood deposits in continental and marine environments: character and significance. In Slatt RM, Zavala C (eds) Sediment transfer from shelf to deep water—revisiting the delivery system. Am Assoc Petrol Geol 61:1–30Google Scholar
  36. Mulder T, Migeon S, Savoye B, Faugères JC (2001) Inversely graded turibidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Marine Lett 21:86–93CrossRefGoogle Scholar
  37. Münich Re Group (2003) Annual review: natural catastrophes 2002. Münich Re Group, Münich, p 62Google Scholar
  38. Pardé M (1928) Périodicité des grandes inondations et crues exceptionnelles. J Alpine Res 16:499–519Google Scholar
  39. Raible CC, Yoshimori M, Stocker TF, Casty C (2007) Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Clim Dyn 28:409–423CrossRefGoogle Scholar
  40. Revel-Rolland M, Arnaud F, Chapron E et al (2005) Sr and Nd isotopes as tracers of clastic sources in Lake Le Bourget sediment (NW Alps, France) during the Little Ice Age: palaeohydrology implications. Chem Geol 224:183–200CrossRefGoogle Scholar
  41. Schiefer E, Gilbert R, Hassan MA (2011) A lake sediment-based proxy of floods in the Rocky Mountain Front Ranges, Canada. J Paleolimnol 45:137–149CrossRefGoogle Scholar
  42. Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34(15): Art. No. L15702Google Scholar
  43. Viollet P-L (2005) Histoire de l’énergie hydraulique: Moulins, pompes, roues et turbines de l’Antiquité au XXe siècle. Presses des Ponts, p 164Google Scholar
  44. Wanner H, Rickli R, Salvisberg E, Schmutz C, Schiiepp M (1997) Global climate change and variability and its influence on alpine climate—concepts and observations. Theor Appl Clim 58:221–243CrossRefGoogle Scholar
  45. Wilhelm B, Arnaud F, Enters D, Allignol F, Legaz A, Magand O, Revillon S, Giguet-Covex C, Malet E (2012a) Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Clim Change 113:563–581CrossRefGoogle Scholar
  46. Wilhelm B, Arnaud F, Sabatier P, Crouzet C, Brisset E, Chaumillon E, Disnar J-R, Guiter F, Malet E, Reyss J-L, Tachikawa K, Bard E, Delannoy J-J (2012b) 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat Res 78:1–12CrossRefGoogle Scholar
  47. Wilhelm B, Arnaud F, Sabatier P, Magand O, Chapron E, Courp T, Tachikawa K, Fanget B, Malet E, Pignol C, Bard E, Delannoy JJ (2013) Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the NW European Alps. J Quat Sci 28:189–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J.-P. Jenny
    • 1
    • 2
    Email author
  • B. Wilhelm
    • 1
    • 3
  • F. Arnaud
    • 1
  • P. Sabatier
    • 1
  • C. Giguet Covex
    • 1
    • 4
  • A. Mélo
    • 1
  • B. Fanget
    • 1
  • E. Malet
    • 1
  • E. Ployon
    • 1
  • M. E. Perga
    • 2
  1. 1.Edytem, CNRSUniversité de SavoieLe Bourget du Lac CedexFrance
  2. 2.INRA, UMR CARRTELUniversité de SavoieThonon-les-bains CedexFrance
  3. 3.Géoazur, CNRS, IRD, OCAUniversité de Nice Sophia-AntipolisValbonneFrance
  4. 4.Laboratoire d’Ecologie Alpine, CNRSUniversité Joseph FourierGrenoble Cedex 9France

Personalised recommendations