Journal of Paleolimnology

, Volume 50, Issue 4, pp 535–544 | Cite as

Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes

  • Ulrike KienelEmail author
  • Peter Dulski
  • Florian Ott
  • Sebastian Lorenz
  • Achim Brauer
Original paper


The recent sediments of two lakes in the NE German lowland became seasonally laminated at different times. Anoxic bottom conditions resulted from a surplus of organic matter (OM), in the early stage indicated by irregularly laminated sediments comprising abundant iron-sulfide framboids. Their diagenetic formation predates the preservation of biochemical calcite varves. In the larger, deeper Lake Tiefer See near Klocksin, anoxia developed stepwise. A first anoxic pulse was contemporary with inflow narrowing by railway-dam construction and accumulation of OM. It was favored by a decrease of the intensity of lake circulation (turnover). Nutrients introduced from artificial fertilizer then increased the primary production (diatoms) to the point of OM surplus and seasonal laminae formation started 40 years later in 1924. In the smaller, shallower Lake Tiefer See in the Uckermark, a massive pulse of iron sulfide was centered around 1960, seven years after installation of piped field drainage into the lake. Anoxia developed rapidly with the nutrients drained from a fertilized groundwater catchment that is 10 times larger than the surface catchment, while surface erosion was reduced. Reducing bottom conditions became regular and the seasonal lamination was preserved after 1967. Morphological criteria to screen lakes for varved sediments should include reductions of natural lake inflow and catchment increase, such as by inflow of field drainage. Similar developments of increased nutrient input or intensity decrease of lake circulation may result from historical human activities but also from natural processes.


Anoxia Diatoms Human impact Sediment chemistry Varve preservation 



The study is a contribution to the Helmholtz Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) and is supported by infrastructure of the Terrestrial Environmental Observatory (TERENO) of the Helmholtz Association. We thank Sylvia Pinkerneil and Petra Meier for help with field work and laboratory analyses. Gabriele Arnold and Brian Brademann prepared excellent thin sections. Thanks to the helpful comments of the associate editor Oliver Heiri and two anonymous reviewers the manuscript could be strongly improved.


  1. Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr Palaeoecol 62:215–235CrossRefGoogle Scholar
  2. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365Google Scholar
  3. Brauer A (2004) Annually laminated lake sediments and their palaeoclimatic relevance. In: Miller H, Negendank JFW, Flöser G, von Storch H, Fischer H, Lohmann G, Kumke T (eds) The climate in historical times: towards a synthesis of Holocene proxy data and climate models. Springer, Berlin, pp 109–128CrossRefGoogle Scholar
  4. Brauer A, Casanova J (2001) Chronology and depositional processes of the laminated sediment record from Lac d‘Annecy, French Alps. J Paleolimnol 25:163–177CrossRefGoogle Scholar
  5. Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW (2008) An abrupt wind shift in Western Europe at the onset of the Younger Dryas cold period. Nat Geosci 1:520–523CrossRefGoogle Scholar
  6. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geol Soc Lond Spec Publ 267:51–63CrossRefGoogle Scholar
  7. Davison W (1993) Iron and Manganese in lakes. Earth-Sci Rev 34:119–163CrossRefGoogle Scholar
  8. Dörfler W, Feeser I, van den Bogaard C, Dreibrodt S, Erlenkeuser H, Kleinmann A, Merkt J, Wiethold J (2012) A high-quality annually laminated sequence from Lake Belau, Northern Germany: revised chronology and its implications for palynological and tephrochronological studies. Holocene 22:1413–1426CrossRefGoogle Scholar
  9. Dreibrodt S, Bork H-R, Brauer A, Negendank JFW (2003) Der Einfluss der Landnutzung im Einzugsgebiet auf die Sedimentation jahresgeschichteter Oberflächensedimente in zwei Becken des Woseriner Sees (Mecklenburg-Vorpommern). In: Bork H-R, Schmidtchen G, Dotterweich M (eds) Bodenbildung Bodenerosion und Reliefentwicklung im Mittel-und Jungholozän Deutschlands. Deutsche Akademie für Landeskunde, Selbstverlag, Flensburg, pp 229–249Google Scholar
  10. Ekdahl EJ, Teranes JL, Guilderson TP, Turton CL, McAndrews JH, Wittkop CA, Stoermer EF (2004) Prehistorical record of cultural eutrophication from Crawford Lake, Canada. Geology 32:745–748CrossRefGoogle Scholar
  11. Engel F (1961) Blatt 34 Krakow am See. Historischer Atlas von Mecklenburg, Wiebeking, C.F. (1755–1788). Böhlau, Köln, GrazGoogle Scholar
  12. Enters D, Dörfler W, Zolitschka B (2008) Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. Holocene 18:243–254CrossRefGoogle Scholar
  13. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci UK 13:13–35CrossRefGoogle Scholar
  14. Håkansson H (2002) A compilation and evaluation of species in the genera Stephanodiscus, Cyclostephanus and Cyclotella with a new genus in the family Stephanodiscaceae. Diatom Res 17:1–139CrossRefGoogle Scholar
  15. Jellison R, Melack JM (1993) Meromixis in hypersaline Mono Lake, California. 1. Stratification and vertical mixing during the onset, persistence, and break down of meromixis. Limnol Oceanogr 38:1008–1019CrossRefGoogle Scholar
  16. Kelts K, Hsü K (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology and physics. Springer, Berlin, pp 295–323Google Scholar
  17. Kelts K, Briegel U, Ghilardi K, Hsü K (1986) The limnogeology-ETH coring system. Schweiz Z Hydrol 48:104–115CrossRefGoogle Scholar
  18. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Koppen-Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  19. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). Fischer, Stuttgart, p 576Google Scholar
  20. Landesamt für Geowissenschaften und Rohstoffe (2002) Geologische Karte von Preußen und benachbarten deutschen Ländern 1:25000. KleinmachnowGoogle Scholar
  21. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern (2000) Geologische Karte von Mecklenburg-Vorpommern 1:500000. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, GüstrowGoogle Scholar
  22. Lotter AF, Lemcke G (1999) Methods for preparing and counting biochemical varves. Boreas 28:243–252CrossRefGoogle Scholar
  23. Lotter AF, Sturm M, Teranes JL, Wehrli B (1997) Varve formation since 1885 and high-resolution varve analyses in hypertrophic Beldeggersee (Switzerland). Aquat Sci 59:304–325CrossRefGoogle Scholar
  24. Lüder B, Kirchner G, Lücke A, Zolitschka B (2006) Palaeoenvironmental reconstructions based on geochemical parameters from annually laminated sediments of Sacrower See (Northeastern Germany) since the 17th century. J Paleolimnol 35:897–912CrossRefGoogle Scholar
  25. Mangili C, Brauer A, Plessen B, Moscariello A (2007) Centennial-scale oscillations in oxygen and carbon isotopes of endogenic calcite from a 15,500 varve year record of the Piànico interglacial. Quat Sci Rev 26:1725–1735CrossRefGoogle Scholar
  26. Neumann T, Stögbauer A, Walpersdorf E, Stüben D, Kunzendorf H (2002) Stable isotopes in recent sediments of Lake Arendsee, NE Germany: response to eutrophication and remediation measures. Palaeogeogr Palaeoecol 178:75–90CrossRefGoogle Scholar
  27. Nixdorf B, Hemm M, Hoffmann A, Richter P (2004) Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands Teil 2 Mecklenburg-Vorpommern. In: Umweltbundesamt (ed) BrandenburgischeTechnische Universität Cottbus, Lehrstuhl Gewässerschutz, CottbusGoogle Scholar
  28. Ojala AEK, Saarinen T, Salonen V-P (2000) Preconditions for the formation of annually laminated lake sediments in southern and central Finland. Boreal Environ Res 5:243–255Google Scholar
  29. Scharf BW (1998) Eutrophication history of Lake Arendsee (Germany). Palaeogeogr Palaeoecol 140:85–96CrossRefGoogle Scholar
  30. Simola H (1983) Limnological effects of peatland drainage and fertilization as reflected in the varved sediment of a deep lake. Hydrobiologia V 106:43–57CrossRefGoogle Scholar
  31. Suits NS, Wilkin RT (1998) Pyrite formation in the water column and sediments of a meromictic lake. Geology 26:1099–1102CrossRefGoogle Scholar
  32. Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NYGoogle Scholar
  33. Teranes JL, McKenzie JA, Bernasconi SM, Lotter AF, Sturm M (1999) A study of oxygen isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland. Geochim Cosmochim Acta 63:1981–1989CrossRefGoogle Scholar
  34. Wersin P, Höhener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformatin in a freshwater lake sediment. Chem Geol 90:233–252CrossRefGoogle Scholar
  35. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ulrike Kienel
    • 1
    Email author
  • Peter Dulski
    • 1
  • Florian Ott
    • 1
  • Sebastian Lorenz
    • 2
  • Achim Brauer
    • 1
  1. 1.Section 5.2 Climate and Landscape Evolution, Deutsches GeoForschungsZentrum, GFZHelmholtz-Zentrum PotsdamPotsdamGermany
  2. 2.Institute for Geography and GeologyErnst-Moritz-Arndt Universität GreifswaldGreifswaldGermany

Personalised recommendations