Journal of Paleolimnology

, Volume 50, Issue 4, pp 433–446 | Cite as

Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South America, in response to shifts in the southwesterly wind belt during the last deglaciation

  • Marilén Fernández
  • Svante Björck
  • Barbara Wohlfarth
  • Nora I. Maidana
  • Ingmar Unkel
  • Nathalie Van der Putten
Original paper


Isla de los Estados (54° 45′S, 63° 10′–64° 46′W) lies east of the main island of Tierra del Fuego and is the southeastern-most point in Argentina. Because of its geographic position near the latitudes of the Southern Hemisphere Westerlies and the strong influence of the Antarctic Circumpolar Current (ACC), the area is suitable for paleoecological and paleoclimate research. The island is not far north of the Subantarctic Front, which limits the northern boundary of the ACC. Paleoenvironmental study in this geographic location can shed light on past changes in atmospheric and marine circulation patterns. Diatom analysis of the lower part of a sediment sequence from Laguna Cascada (54° 45′ 51.3′′S, 64° 20′ 20.07′′W) enabled inference of changing lake conditions between 16 and 11.1 cal ka BP. Between 16 and 14.4 cal ka BP fragilarioid diatom species, often a pioneer group, dominated the record. Their presence shows seasonally open-water conditions from the onset of sedimentation. In zone II (14.4–12.8 cal ka BP), the dominance of planktonic/tychoplanktonic Aulacoseira spp. might represent longer ice-free periods and windier conditions, which would have kept this heavy species suspended in the water column. This period corresponds to the Antarctic Cold Reversal, when the Southern Hemisphere Westerlies were possibly centered on the latitudes of Tierra del Fuego, resulting in windy and wet conditions. Zone III (12.8–11.1 cal ka BP) is dominated by benthic diatom taxa that are mainly associated with peat and wetland vegetation. This suggests that climate conditions had become milder and less windy, favoring aquatic productivity and terrestrial vegetation development. This change in environmental conditions may have been a consequence of the southward movement of the Southern Hemisphere Westerlies at the start of the Antarctic Holocene thermal optimum.


Diatoms Biogenic silica Isla de los Estados Late glacial-early Holocene Paleoenvironments 



MF especially thanks Hannelore Håkansson and Linda Ampel for help with diatom identification, encouragement and support. Special thanks to Dr. Juan Federico Ponce for discussions and particular thanks to Dr. Jorge Rabassa and Lic. Lorena Grana for reading previous versions of the manuscript. The study was partly financed by the Swedish Research Council (VR 621-2003-3611) and is a contribution to the LUCCI Research Centre.


  1. Ampel L (2008) Dansgaard-Oeschger cycles and Heinrich events in western Europe—a diatom perspective. Stockholm University, PhD thesisGoogle Scholar
  2. Anderson NJ (2000) Diatoms, temperature and climatic change. Eur J Phycol 35:307–314Google Scholar
  3. Björck S, Hjort C, Ljung K, Möller P, Wohlfarth B (2007) Isla de los Estados, Quaternary geology and palaeoclimatology at the end of the world. Swedish Polar Research Secretariat Year book 2006. S. Rickberg, Stockholm, pp 44–49Google Scholar
  4. Björck S, Rundgren M, Ljung K, Unkel U, Wallin Å (2012) Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: a unique record of the variable Southern Hemisphere Westerlies since the last deglaciation. Quat Sci Rev 42:1–14CrossRefGoogle Scholar
  5. Borromei AM, Coronato A, Franzén LG, Ponce JF, López Sáez JA, Maidana N, Rabassa J, Candel MS (2010) Holocene paleoenvironments in subantarctic high Andean valleys (Las Cotorras mire, Tierra del Fuego, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 286:1–16CrossRefGoogle Scholar
  6. Broecker WS (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13:119–121CrossRefGoogle Scholar
  7. Bronk Ramsey C (2001) Development of the radiocarbon calibration program. Radiocarbon 43:355–363Google Scholar
  8. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  9. Bujalesky GG, Heusser CJ, Coronato A, Roig C, Rabassa J (1997) Pleistocene glaciolacustrine sedimentation at Lago Fagnano, Andes of Tierra del Fuego, southernmost South America. Quat Sci Rev 16:767–778CrossRefGoogle Scholar
  10. Cleve-Euler A (1951) Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar 2–5 2:1–163Google Scholar
  11. Cleve-Euler A (1952) Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar 2–5 3(3):1–153Google Scholar
  12. Cleve-Euler A (1953) Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar 2–5 4(1):1–255Google Scholar
  13. Cleve-Euler A (1954) Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar 2–5 4(5):1–158Google Scholar
  14. Cleve-Euler A (1955) Die Diatomeen von Schweden und Finnland. Kungliga Vetenskapsakademiens Handlingar 2–5 5(4):1–232Google Scholar
  15. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, OxfordGoogle Scholar
  16. Conley DJ, Schelske CL (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: volume 3, terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 281–293Google Scholar
  17. Cuven S, Francus P, Lamoureux S (2011) Mid to late holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic. Quat Sci Rev 30:2651–2665CrossRefGoogle Scholar
  18. DeMaster D (1981) The supply and accumulation of silica in the marine-environment. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  19. Denys L (1990) Fragilaria blooms in the Holocene of the western coastal plain of Belgia. In: Simola H (ed) Proceedings of the tenth international diatom symposium. Finland, Koeltz Scientific Books, pp 397–406Google Scholar
  20. Douglas MSV, Smol JP (1995) Periphytic diatom assemblages from high Arctic ponds. J Phycol 31:60–69CrossRefGoogle Scholar
  21. Douglas MSV, Smol JP (2010) Freshwater diatoms as indicators of environmental change in the High Artic. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 249–266CrossRefGoogle Scholar
  22. EPICA community members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198CrossRefGoogle Scholar
  23. Espinosa M (2008) Diatoms from Patagonia and Tierra del Fuego. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Dev Quaternary Sci 11:383–392Google Scholar
  24. Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 281:363–375CrossRefGoogle Scholar
  25. Frenguelli J (1924) Diatomeas de la Tierra del Fuego. Primera Expedición a tierra del Fuego. An Soc Cient Arg: 5-63, Buenos AiresGoogle Scholar
  26. Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–230CrossRefGoogle Scholar
  27. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of sea water analysis. Verlag, Chemie, p 314Google Scholar
  28. Grimm E (1991) Tilia Software. Illinois State Museum, SpringfieldGoogle Scholar
  29. Haworth E (1988) Distribution of diatom taxa of the old genus Melosira (now mainly Aulacoseira) in Cumbrian waters. Algae and the aquatic environment F. E. Round. Biopress Ltd., Bristol, pp 139–167Google Scholar
  30. Heymann C, Nelle O, Dörfler W, Zagana H, Nowaczyk N, Unkel I (2013) Late Glacial to mid-Holocene palaeoclimate development of the Eastern Mediterranean region inferred from the sediment sequence of Lake Stymphalia (NE Peloponnese, Greece). Quat Int (in press). doi: 10.1016/j.quaint.2013.02.014
  31. Hodgson DA, Sime LC (2010) Southern Westerlies and CO2. Nat Geosci 3:666–667CrossRefGoogle Scholar
  32. Hubbard A, Hein AS, Kaplan MR, Hulton NRJ, Glasser N (2005) A modeling reconstruction of the last glacial maximum ice sheet and its deglaciation in the vicinity of the Northern Patagonian Icefield, South America. Geogr Ann A 87:375–391CrossRefGoogle Scholar
  33. Hustedt F (1930–1966) Die kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtung der übrigen Länder Europsas sowie der angrenzenden Meersgebiete. Dr. L. Rabenhorsts Kryptogamen-Flora, 7. Verlag, Leipzig, AkadGoogle Scholar
  34. Jin Z, Wang S, Shen J, Zhang E, Li F, Ji J, Lu X (2001) Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf Process 26:775–782CrossRefGoogle Scholar
  35. Jin Z, Cao J, Wu J, Wang S (2006) A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surf Process 31:285–291CrossRefGoogle Scholar
  36. Kilham SS, Theriot EC, Fritz SC (1996) Linking planktonic diatoms and climate change in the large lakes of Yellowstone ecosystem using resource theory. Limnol Oceanogr 41:1052–1062CrossRefGoogle Scholar
  37. Kilian R, Lamy F (2012) A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quat Sci Rev 53:1–23CrossRefGoogle Scholar
  38. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  39. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculariaceae. Süssewasser-flora von Mitteleuropa. S. Gustav Fisher Verlag, New York, p 876Google Scholar
  40. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Süssewasser-flora von Mitteleuropa. S. Gustav Fisher Verlag, New York, p 596Google Scholar
  41. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Süssewasser-flora von Mitteleuropa. Berlin, p 598Google Scholar
  42. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) un Gomphonema. Süssewasser-flora von Mitteleuropa. S. Gustav Fisher Verlag, New York, p 437Google Scholar
  43. Kühnemann O (1976) Observaciones ecológicas sobre la vegetación marina terrestre de la Isla de los Estados (Tierra del Fuego, Argentina). Ecosur 3:121–248Google Scholar
  44. Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117CrossRefGoogle Scholar
  45. Lamy F, Kilian R, Arz HW, Francois JP, Kaiser J, Prange M, Steinke T (2010) Holocene changes in the position and intensity of the southern westerly wind belt. Nat Geosci 3:695–699CrossRefGoogle Scholar
  46. Löwemark L, Chen HF, Yang TN, Kylander M, Yu EF, Hsu YW, Lee TQ, Song SR, Jarvis S (2011) Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. J Asian Earth Sci 40:1250–1256CrossRefGoogle Scholar
  47. Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI, Ohlendorf C, Schäbitz F, Schleser GH, Struck U, Wille M, Zolitschka B (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227CrossRefGoogle Scholar
  48. McCormac G, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092Google Scholar
  49. McCulloch R, Davies SJ (2001) Late glacial and Holocene palaeoenvironmental changes in the central Strait of Magellan, southern Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 173:143–173CrossRefGoogle Scholar
  50. McCulloch RD, Bentley MJ, Tipping RM, Clapperton CM (2005) Evidence for late-glacial ice dammed lakes in the central Strait of Magellan and Bahía Inútil, southernmost South America. Geogr Ann A 87:335–362CrossRefGoogle Scholar
  51. McGlone MS, Turney CSM, Wilmshurst JM, Renwick J, Panhke K (2010) Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nat Geosci 3:622–626CrossRefGoogle Scholar
  52. Möller P, Hjort C, Björck S, Rabassa J, Ponce JF (2010) Late quaternary glaciation history of Isla de los Estados, southeasternmost South America. Quat Res 73:521–534CrossRefGoogle Scholar
  53. Naguno T, Kobayasi H (1977) Proposal of Melosira arentii (Kolbe) comb. nov. based on light and electron microscopy. Bull Jpn Soc Phycol 25:182–188Google Scholar
  54. Patrick R, Reimer CW (1966–1977) The diatoms of the United States exclusive of Alaska and Hawaii. Philadelphia. Vols 1 and 2, Monograph 13, p 688Google Scholar
  55. Ponce JF (2009) Palinología y geomorfología del Cenozoico tardío de la Isla de los Estados. Bahía Blanca, Universidad Nacional del Sur. PhD Thesis, p 191Google Scholar
  56. Ponce JF, Borromei AM, Rabassa JO, Martinez O (2011a) Late Quaternary palaeoenvironmental change in western Staaten Island (54.5°S; 64°W). Fueguian Archipelago. Quat Int 233:89–100CrossRefGoogle Scholar
  57. Ponce JF, Rabassa JO, Coronato A, Borromei AM (2011b) Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol J Linn Soc 103:363–379CrossRefGoogle Scholar
  58. Putnam AE, Denton GH, Schaefer GM, Barrell DJA, Andersen BG, Finkel RC, Schwartz R, Doughty AM, Kaplan MR, Schlüchter C (2010) Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat Geosci 3:700–704CrossRefGoogle Scholar
  59. Rabassa J (2008) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, AmsterdamGoogle Scholar
  60. Recasens C (2008) Lago Fagnano, Tierra de Fuego: a multiproxy environmental record in southernmost Patagonia for the last ca. 200 years. Risques Gèologiques et Environnement. Genève, Risques Gèologiques et Environnement. Falcuté des Sciences. Universitè de Genève. Master thesisGoogle Scholar
  61. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor CB, Plicht JVD, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  62. Renberg I, Hellberg T (1982) The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11:30–33Google Scholar
  63. Richter TO, van der Gaast S, Koster B, Vaars A, Gieles R, de Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New Techniques in Sediment Core Analysis. Spec Publ Geol Soc 267:39–50Google Scholar
  64. Röhl U, Abrams LJ (2000) High-resolution, downhole, and nondestructive core measurements from site 999 and 1001 in the Carribean Sea: application to the Late Paleocene thermal maximum. In: Leckie, RM, Sigurdsson H, Acton GD, Draper G (ed) Proceedings of the Ocean Drilling Program, Scientific Results 165, College Station, TXGoogle Scholar
  65. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate induced shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2745Google Scholar
  66. Rumbrich U, Lange-Bertalot H, Rumbrich M (2000) Iconographia Diatomologica 9. Diatomeen der Anden von Venezuela bis Patagonien/Tierra del Fuego. In: Lange-Bertalot H (ed). K G Gantner Verlag, Germany, p 672Google Scholar
  67. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climatic change in Arctic using lake sediments. Front Ecol Environ 5:466–474CrossRefGoogle Scholar
  68. Sterken M, Verleyen E, Sabbe K, Terryn G, Charlet F, Bertrand S, Boës X, Fagel N, De Batist M, Vyverman W (2008) Late Quaternary climatic changes in southern Chile, as recorded in a diatom sequence of Lago Puyehue (40° 40′ S). J Paleolimnol 39:219–235CrossRefGoogle Scholar
  69. Stern C (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454CrossRefGoogle Scholar
  70. Stoermer EF (1993) Evaluating diatom succession: some peculiarities of Great Lakes case. J Paleolimnol 8:71–83CrossRefGoogle Scholar
  71. Sugden DE, Bentley MJ, Fogwill CJ, Hulton NRJ, McCulloch RD, Purves RS (2005) Late Glacial glacier events in southernmost South America: a blend of “Northern” and “Southern” Hemispheric climatic signals? Geogr Ann A 87:273–288CrossRefGoogle Scholar
  72. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geoph Geosy 8:1–12. doi: 10.1029/2006GC001393 Google Scholar
  73. Unkel I, Björck S, Wohlfarth B (2008) Deglacial environmental changes on Isla de los Estados (54.4 S), southeastern Tierra del Fuego. Quat Sci Rev 27:1541–1554CrossRefGoogle Scholar
  74. Unkel I, Fernandez M, Björck S, Kjung K, Wolfarth B (2010) Records of environmental changes during the Holocene from Isla de los Estados (54.4°S), southeastern Tierra del Fuego. Glob Planet Change 74:99–113CrossRefGoogle Scholar
  75. Van Dam H, Meriens A, Sinkeldam J (1994) A code checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  76. Whittacker TE, Hendy CH, Hellstrom JC (2011) Abrupt millennial-scale changes in intensity of Southern Hemisphere westerly winds during marine isotope stages 2–4. Geol Soc Am Bull 39:455–458Google Scholar
  77. Wille M, Maidana NI, Schäbitz F, Fey M, Haberzettl T, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schleser GH (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246CrossRefGoogle Scholar
  78. Wilson SE, Smol JP, Sauchyn DJ (1997) A Holocene paleosalinity diatom record from southwestern Saskatchewan, Canada: Harris Lake revisited. J Paleolimnol 17:23–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marilén Fernández
    • 1
  • Svante Björck
    • 2
  • Barbara Wohlfarth
    • 3
  • Nora I. Maidana
    • 4
  • Ingmar Unkel
    • 5
  • Nathalie Van der Putten
    • 2
  1. 1.Laboratorio de Geomorfología y CuaternarioCADIC-CONICETUshuaiaArgentina
  2. 2.Department of Geology, Quaternary SciencesLund UniversityLundSweden
  3. 3.Department of Geological SciencesStockholm UniversityStockholmSweden
  4. 4.Laboratorio de Diatomeas Continentales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires-CONICETBuenos AiresArgentina
  5. 5.Institute for Ecosystem ResearchKiel UniversityKielGermany

Personalised recommendations