Advertisement

Journal of Paleolimnology

, Volume 50, Issue 2, pp 207–229 | Cite as

Diatom–environment relationships and a transfer function for conductivity in lakes of the Badain Jaran Desert, Inner Mongolia, China

  • Patrick Rioual
  • Yanbin Lu
  • Handong Yang
  • Louis Scuderi
  • Guoqiang Chu
  • Jonathan Holmes
  • Bingqi Zhu
  • Xiaoping Yang
Original Paper

Abstract

We describe a dataset of 26 modern diatom samples and associated environmental variables from the Badain Jaran Desert, northwest China. The influence of electrical conductivity (EC) and other variables on diatom distribution was explored using multivariate analyses and generalized additive modeling of species response curves. A transfer function was derived for EC, the variable with the largest unique effect on diatom variance, as shown by partial canonical correspondence analysis. Weighted-averaging partial least squares regression and calibration provided the best model, with a high coefficient of determination (\( {\text{r}}_{\text{boot}}^{2} \) = 0.91) and low prediction error (RMSEPboot = 0.136 log10 μS cm−1). To assess its potential for palaeosalinity and palaeoclimate reconstructions, the EC transfer function was applied to fossil diatom assemblages from 210Pb-dated short sediment cores collected from two subsaline lakes of the Badain Jaran Desert. The diatom-inferred (DI) EC reconstructions were compared with meteorological data for the past 50 years and with remote sensing data for the period AD 1990–2012. Changes in DI–EC were small and their relationship with climate was weak. Moreover, remote sensing data indicate that the surface areas and water depths of these lakes did not change, which suggests that water loss by evaporation is compensated by groundwater inflow. These results suggest that the response of these lakes to climate change is mediated by non-climatic factors such as the hydrogeological setting, which control recharge from groundwater, and may be non-linear and non-stationary.

Keywords

Diatoms Transfer function Electrical conductivity Saline lakes Badain Jaran Desert China 

Notes

Acknowledgments

This research was funded by the National Natural Science Foundation of China (Grant Number: 40930105) and the Chinese Academy of Sciences (Grant Number: kzcx2-yw-119). We thank Oliver Heiri, Mark Brenner and two anonymous reviewers for their constructive comments on the manuscript.

Supplementary material

10933_2013_9715_MOESM1_ESM.doc (278 kb)
Supplementary material 1 (DOC 278 kb)
10933_2013_9715_MOESM2_ESM.doc (2.4 mb)
Supplementary material 2 (DOC 2503 kb)

References

  1. Appleby PG (2000) Radiometric dating of sediment records in European mountain lakes. J Limnol 59:1–14CrossRefGoogle Scholar
  2. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: basin analysis, coring, and chronological techniques, vol 1. Kluwer, Dordrecht, pp 171–203CrossRefGoogle Scholar
  3. Barker PA (1992) Differential diatom dissolution in late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J Paleolimnol 7:235–251CrossRefGoogle Scholar
  4. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  5. Bennett KD (1996) Determination of the number of zones in a biostratigraphic sequences. New Phytol 132:155–170CrossRefGoogle Scholar
  6. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  7. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  8. Bronk DA, Lomas MW, Glibert PM, Schukert KJ, Sanderson MP (2000) Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods. Mar Chem 69:163–178CrossRefGoogle Scholar
  9. Campbell ID (1996) Power function for interpolating dates in recent sediment. J Paleolimnol 15:107–110CrossRefGoogle Scholar
  10. Cumming BF, Wilson SE, Hall RI, Smol JP (1995) Diatoms from British Columbia (Canada) lakes and their relationships to salinity, nutrients and other limnological variables. J. Cramer, BerlinGoogle Scholar
  11. Davies SJ, Metcalfe SE, Caballero ME, Juggins S (2002) Developing diatom-based transfer functions for Central Mexican lakes. Hydrobiologia 467:199–213CrossRefGoogle Scholar
  12. Endoh S, Tsujii I, Kawashima M, Okumura Y (2008) A new method for temperature compensation of electrical conductivity using temperature-fold dependency of fresh water. Limnology 9:159–161CrossRefGoogle Scholar
  13. Fritz SC (2008) Deciphering climatic history from lake sediments. J Paleolimnol 39:5–16CrossRefGoogle Scholar
  14. Fritz SC, Juggins S, Battarbee RW (1993) Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can J Fish Aquat Sci 50:1844–1856CrossRefGoogle Scholar
  15. Gasse F, Juggins S, Ben Khelifa L (1995) Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeogr Palaeoclimatol Palaeoecol 117:31–54CrossRefGoogle Scholar
  16. Gell PA (1997) The development of a diatom database for inferring lake salinity, Western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Aust J Bot 45:389–423CrossRefGoogle Scholar
  17. Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77:661–671CrossRefGoogle Scholar
  18. Hahn A, Hofmann J (1999) Mikroalgen einer hydrologisch vielfältigen Seengruppe im Megadünengebiet der Badain Jaran Wüste/VR China. Berichte des IGB H7:59–62Google Scholar
  19. Hammer UT, Shamess J, Haynes RC (1983) The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105:1–26CrossRefGoogle Scholar
  20. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  21. Hofmann J (1996) The lakes in the SE part of Badain Jaran Shamo, their limnology and geochemistry. Geowissenschaften 14:275–278Google Scholar
  22. Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süßwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., RuggellGoogle Scholar
  23. Jones MN (1984) Nitrate reduction by shaking with cadmium. Water Res 18:643–646CrossRefGoogle Scholar
  24. Juggins S (2003–2010) C2 data analysis. Version 1.6.5. University of Newcastle, NewcastleGoogle Scholar
  25. Krammer K (1997) Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 2. Encyonema part., Encyonopsis and Cymbellopsis. J. Cramer, BerlinGoogle Scholar
  26. Lange-Bertalot H (2001) Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. A.R.G. Gantner Verlag K.G., RuggellGoogle Scholar
  27. Lepš S, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  28. Levkov Z (2009) Amphora sensu lato. A.R.G. Gantner Verlag K.G., RuggellGoogle Scholar
  29. Lotter AF, Juggins S (1994) ZONE. Unpublished computer softwareGoogle Scholar
  30. Ma J, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243Google Scholar
  31. Ma Z, Fu C (2006) Some evidence of drying trend over northern China from 1951 to 2004. Chin Sci Bull 51:2913–2925CrossRefGoogle Scholar
  32. Metzeltin D, Lange-Bertalot H, Soninkhishig N (2009) Diatoms in Mongolia. A.R.G. Gantner Verlag K.G., RuggellGoogle Scholar
  33. Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schedele estuary (Belgium/The Netherlands). Estuar Coast Shelf Sci 82:335–340CrossRefGoogle Scholar
  34. Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) (2011) MODIS subsetted land products, collection 5. ORNL DAAC, Oak Ridge. Available on-line (http://daac.ornl.gov/MODIS/modis.html). Accessed 06 Jan 2012
  35. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51CrossRefGoogle Scholar
  36. Potapova M (2006) Achnanthidium zhakovschikovii sp. nov. (Bacillariophyta) and related species from rivers of Northwestern Russia. Nova Hedwigia 82:399–408CrossRefGoogle Scholar
  37. Reavie ED, Neill KE, Little JL, Smol JP (2006) Cultural eutrophication trends in southeastern Ontario lakes: a paleolimnological perspective. Lake Reserv Manag 22:44–58CrossRefGoogle Scholar
  38. Reed JM (1998) A diatom–conductivity transfer function for Spanish salt lakes. J Paleolimnol 19:399–416CrossRefGoogle Scholar
  39. Reed JM, Mesquita-Joanes F, Griffiths HI (2012) Multi-indicator conductivity transfer functions for Quaternary palaeoclimate reconstruction. J Paleolimnol 47:251–275CrossRefGoogle Scholar
  40. Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90CrossRefGoogle Scholar
  41. Ryves DB, Juggins S, Fritz SC, Battarbee RW (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr Palaeoclimatol Palaeoecol 172:99–113CrossRefGoogle Scholar
  42. Ryves DB, McGowan S, Anderson NJ (2002) Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshw Biol 47:995–1014CrossRefGoogle Scholar
  43. Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and west Greenland. Limnol Oceanogr 51:1355–1368CrossRefGoogle Scholar
  44. Schönfelder I, Gelbrecht J, Schönfelder J, Steinberg CEW (2002) Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. J Phycol 38:66–82CrossRefGoogle Scholar
  45. Scuderi LA, Laudadio CK, Fawcett PJ (2010) Remote sensing of Playa lakes in western North America: monitoring lake change resulting from climate variability in semi-arid regions. Quat Res 73:48–58CrossRefGoogle Scholar
  46. Sereda J, Bogard M, Hudson J, Helps D, Dessouki T (2011) Climate warming and the onset of salinization: rapid changes in the limnology of two northern plains lakes. Limnologica 41:1–9CrossRefGoogle Scholar
  47. Shinneman ALC, Edlund MB, Almendinger JE, Soninkhishig N (2009) Diatoms as indicators of water quality in Western Mongolian lakes: a 54-site calibration set. J Paleolimnol 42:373–389CrossRefGoogle Scholar
  48. ter Braak CJF, Juggins S (1993) Weigthed averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270):485–502CrossRefGoogle Scholar
  49. ter Braak CJF, Šmilauer P (2002) CANOCO for Windows version 4.5. Biometris, WageningenGoogle Scholar
  50. Tibby J (2001) Diatoms as indicators of sedimentary processes in Burrinjuck reservoir, New South Wales, Australia. Quat Int 83(85):245–256CrossRefGoogle Scholar
  51. Vautard R, Cattiaux J, Yiou P, Thépaut J-N, Ciais P (2010) Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761CrossRefGoogle Scholar
  52. Verleyen E, Hodgson DA, Vyverman W, Roberts D, McMinn A, Vanhoutte K, Sabbe K (2003) Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. J Paleolimnol 30:195–215CrossRefGoogle Scholar
  53. Wang R, Yang X, Langdon P, Zhang E (2011) Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years. J Paleolimnol 45:257–271CrossRefGoogle Scholar
  54. Wetzel RG, Likens GE (2000) Limnological analysis, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  55. Wilson SE, Cumming BF, Smol JP (1996) Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can J Fish Aquat Sci 53:1580–1594Google Scholar
  56. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I. A.R.G. Gantner Verlag K.G., RuggellGoogle Scholar
  57. Wojtal AZ, Ector L, Van de Vijver B, Morales EA, Blanco S, Piatek J, Smieja A (2011) The Achnanthidium minutissimum complex (Bacillariophyceae) in southern Poland. Algol Stud 136–137:211–238CrossRefGoogle Scholar
  58. Yang XD, Kamenik C, Schmidt R, Wang S (2003) Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai–Xizang) Plateau lakes. J Paleolimnol 30:1–19CrossRefGoogle Scholar
  59. Yang XP (2000) Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30,000 years. Chin Sci Bull 45:1042–1047CrossRefGoogle Scholar
  60. Yang XP, Williams MAF (2003) The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51:45–61CrossRefGoogle Scholar
  61. Yang XP, Liu TS, Xiao H (2003) Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quat Int 104:99–112CrossRefGoogle Scholar
  62. Yang XP, Ma N, Dong J, Zhu B, Xu B, Ma Z, Liu J (2010) Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quat Res 73:10–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Patrick Rioual
    • 1
  • Yanbin Lu
    • 1
  • Handong Yang
    • 2
  • Louis Scuderi
    • 3
  • Guoqiang Chu
    • 1
  • Jonathan Holmes
    • 2
  • Bingqi Zhu
    • 4
  • Xiaoping Yang
    • 1
  1. 1.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Environmental Change Research CentreUniversity College LondonLondonUK
  3. 3.Department of Earth and Planetary SciencesUniversity of New MexicoAlbuquerqueUSA
  4. 4.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations