Advertisement

Journal of Paleolimnology

, Volume 50, Issue 1, pp 41–56 | Cite as

Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires

  • Alberto Araneda
  • Patricia Jana
  • Carolina Ortega
  • Fernando Torrejón
  • Sébastien Bertrand
  • Patricia Vargas
  • Nathalie Fagel
  • Denisse Alvarez
  • Alejandra Stehr
  • Roberto Urrutia
Original paper

Abstract

Patagonia is commonly seen as an exceptionally pristine area because of its wildlife and practically unpolluted waters. However, during the twentieth century the burning of natural forests was one of the most important human activities in Northern Chilean Patagonia. Some estimations indicate that three million hectares were burned during the first three decades of the century. Hence the objective of this study was to evaluate the impacts of the historical fires in Lake Burgos (45º42′S) and Lake Thompson (45º38′S) in Chilean Patagonia. The impact was measured by evaluating chironomid assemblage since they are sensitive enough to be used as an indicator of aquatic ecosystem health. Fires have a direct and drastic effect on a lake watershed but also indirectly affect a lake ecosystem, changing sedimentation patterns or increasing nutrient inputs. In the studied lakes the periods with higher prevalence of fires were identified by charcoal analysis, while organic matter and magnetic susceptibility allowed the confirmation of pre-fire and post-fire periods. The chironomid composition was evaluated through a PCA and an analysis of similarity (ANOSIM) to test the significance among periods while a Detrended Correspondence Analysis was applied to the chironomid assemblage downcore to assess compositional structure and taxa turnover. In Lake Burgos the ANOSIM test indicated significant differences between the pre-fire and fire periods (p < 0.05), while in Lake Thompson differences were not significant. However, in Lake Thompson the PCA clearly separated the pre-fire from the fire period but not the fire from the post-fire periods. In both lakes chironomid composition changed in relation to the period of higher prevalence of fires, which in turn implies catchment changes, pollution, and other anthropogenic impacts. Particularly a marked change in mesotrophic/eutrophic taxa was detected, reflecting an increase in nutrient input due to deforestation. Our findings point out that the lacustrine ecosystems are still affected by the impact of fires and the subsequent increase in nutrient supply that occurred almost 50 years ago. No sign of reverting to pre-disturbance conditions was observed, which makes these lakes highly sensitive to current human-induced impacts.

Keywords

Fires impacts Lake sediments Chironomids Charcoal Southern Chile 

Notes

Acknowledgments

Funding for this research is from the Fondecyt project N 11080158 and partially from Fondecyt project 1120765. Also a bilateral cooperation project between Chile and the Wallonie community of Belgium is acknowledged. Authors are especially grateful to the cooperation of Corporación Nacional Forestal (CONAF) and Carabineros de Chile. We wish to thank the associate editor and three anonymous reviewers for their constructive comments and suggestions.

References

  1. Amigo J, Ramírez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26CrossRefGoogle Scholar
  2. Araneda A, Torrejon F, Aguayo M, Torres L, Cruces F, Cisternas M, Urrutia R (2007) Historical records of San Rafael glacier advances (North Patagonian Icefield): another clue to ‘Little Ice Age’ timing in southern Chile? Holocene 17:987–998CrossRefGoogle Scholar
  3. Bertrand S, Araneda A, Vargas P, Jana P, Fagel N, Urrutia R (2012) Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: insights from Chilean Patagonia, Quat Geochronol. http://dx.doi.org/10.1016/j.quageo.2012.06.003
  4. Birks H (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  5. Bizama G, Torrejón F, Aguayo M, Muñoz MD, Echeverría C, Urrutia R (2011) Pérdida y fragmentación del bosque nativo en la cuenca del río Aysén (Patagonia-Chile) durante el siglo XX. Revista de Geografía del Norte Grande 49:125–138CrossRefGoogle Scholar
  6. Boyle JF (2002) Inorganic geochemical methods in palaeolimnology. In: Last W, Smol J (eds) Tracking environmental change using lake sediments. Springer, New York, pp 83–141CrossRefGoogle Scholar
  7. Brooks SJ (2000) Lateglacial fossil midge (Insecta: Diptera: Chironomidae) stratigraphies from the Swiss Alps. Palaeogeogr Palaeoclimatol Palaeoecol 159:261–279CrossRefGoogle Scholar
  8. Brooks SJ, Birks HJB (2001) Chironomid-inferred temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741CrossRefGoogle Scholar
  9. Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities science. Science 313:58–61CrossRefGoogle Scholar
  10. Brooks S, Langdon P, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London, p 276Google Scholar
  11. Brundin L (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges, with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kungl Svenska Vetens Handlingar 11:1–472Google Scholar
  12. Clark J (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  13. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 1st edn. Plymouth Marine Laboratory, Plymouth, UK; 2nd edn. PRIMER-E, Plymouth, UKGoogle Scholar
  14. Eggermont H, Heiri O, Verschuren D (2006) Subfossil Chironomidae (Insecta: Diptera) as quantitative indicators for past salinity variation in African lakes. Quat Sci Rev 25:1966–1994CrossRefGoogle Scholar
  15. Francis D (2001) A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chironomid remains. J Paleolimnol 25:351–365CrossRefGoogle Scholar
  16. Gajardo R (1994) La Vegetación Natural de Chile Clasificación y Distribución Geográfica. Editorial Universitaria, Santiago de Chile, p 165Google Scholar
  17. Grimm E (1987) A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  18. Heiri O, Lotter AF (2003) 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J Paleolimnol 30:273–289CrossRefGoogle Scholar
  19. Higuera PE, Whitlock C, Gage JA (2010) Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA. Holocene 21:327–341CrossRefGoogle Scholar
  20. Holz A, Veblen TT (2011) The amplifying effects of humans on fire regimes in temperate rainforests in western Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 3(311):82–92CrossRefGoogle Scholar
  21. Huber UM, Markgraf V (2003) European impact on fire regimes and vegetation dynamics at the steppe-forest ecotone of southern Patagonia. Holocene 13:567–579CrossRefGoogle Scholar
  22. IREN (1979) Perspectivas de desarrollo de los recursos de la Región Aysén. Corporación de Fomento de la Producción, Santiago, Chile, p 507Google Scholar
  23. Juggins S (2007) C2 version 1.5: software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: department of geography, University of Newcastle. Newcastle upon Tyne, pp 73Google Scholar
  24. Langdon PG, Barber KE, Lomas-Clarke SH (2004) Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria. J Paleolimnol 32:197–213CrossRefGoogle Scholar
  25. Long CJ, Whitlock C, Bartlein PJ, Millspaugh SH (1998) A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can J For Res 28:774–787CrossRefGoogle Scholar
  26. Lynch JA, Clark JS, Bigelow NH, Edwards ME, Finney BP (2003) Geographic and temporal variations in fire history in boreal ecosystems of Alaska. J Geophys Res 108:8-1–8-17CrossRefGoogle Scholar
  27. Markgraf V, Whitlock C, Haberle S (2007) Vegetation and fire history during the last 18000 cal year B.P. in Southern Patagonia: mallín Pollux, Coyhaique, Province Aysén (45°41′30″ S, 71°50′30″ W, 640 m elevation). Palaeogeogr Palaeocl 254:492–507CrossRefGoogle Scholar
  28. Martinic M (2005) De la Trpananda alAysén. Pehuén Editores, Santiago de Chile, p 539Google Scholar
  29. Massaferro J, Brooks SJ (2002) Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. Quat Res 17:101–111Google Scholar
  30. Massaferro J, Brooks SJ, Haberle SG (2005) The dynamics of chironomid assemblages and vegetation during the late quaternary at Laguna Facil, Chonos Archipelago, southern Chile. Quat Sci Rev 24:2510–2522CrossRefGoogle Scholar
  31. Massaferro JI, Moreno PI, Denton GH, Vandergoes M, Dieffenbacher-Krall A (2009) Chironomid and pollen evidence for climate fluctuations during the last glacial termination in NW Patagonia. Quat Sci Rev 28:517–525CrossRefGoogle Scholar
  32. McWethy DB, Whitlock C, Wilmshurst JM, McGlone MS, Fromont M, Li X, Dieffenbacher-Krall A, Hobbs WO, Fritz SC, Cook ER (2010) Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proc Natl Acad Sci USA 107Google Scholar
  33. Millet L, Vannière B, Verneaux V, Magny M, Disnar J, Laggoun-Défarge F, Walter-Simonnet A, Bossuet G, Ortu E, de Beaulieu J (2007) Response of littoral chironomid communities matter to late glacial lake-level, vegetation changes at Lago dell’Accesa (Tuscany, Italy). J Paleolimnol 38:525–539CrossRefGoogle Scholar
  34. Oksanen JR, Kindt P, Legendre, O’Hara RB (2005) Vegan: community ecology package version 1.15-3. (http://cc.oulu.fi/*jarioksa/)
  35. Paggi A (2001) Diptera: Chironomidae. In: Fernández HR, Domínguez E (eds) Guía para la determinación de los artrópodos bentónicos Sudamericanos. Editorial Universitaria de Tucumán, Tucumán, Argentina, pp 167–194Google Scholar
  36. Philibert A, Prairie YT, Carcaillet C (2003) 1200 years of fire impact on biogeochemistry as inferred from high resolution diatom analysis in a kettle lake from the Picea mariana-moss domain (Quebec, Canada). J Paleolimnol 30:167–181CrossRefGoogle Scholar
  37. Pomar J (1923) La concesión del Aysén y el valle Simpson. Imprenta Cervantes, Santiago de Chile, p 137Google Scholar
  38. Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1529–1551CrossRefGoogle Scholar
  39. Quintanilla V (2005) Estado de recuperación del bosque nativo en una cuenca nordpatagónica de Chile, perturbada por grandes fuegos acaecidos 50 años atrás (44º–45º S). Revista de Geografía del Norte Grande 34:73–92Google Scholar
  40. Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia icefields of South America to sea level rise. Science 302:434–437CrossRefGoogle Scholar
  41. Romero H (1985) Geografía de los Climas. In: López E (ed) Geografía de Chile. Instituto Geográfico Militar, Santiago de Chile, p 243Google Scholar
  42. Saether OA (1975) Neartic chironomids as indicators of lake typology. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19:3127–3133Google Scholar
  43. Scrimgeour GJ, TW M, PC A, G C (2001) Benthic macroinvertebrate biomass and wildfires: evidence for enrichment of boreal subarctic lakes. Freshw Biol 46:367–378CrossRefGoogle Scholar
  44. Sernageomin (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, 4 (CD-ROM, versión1.0, 2003), Santiago de Chile, pp 23Google Scholar
  45. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual version 4.5. Microcomputer Power, Ithaca, NYGoogle Scholar
  46. Thevenon F, Williamson D, Bard E, Anselmetti FS, Beaufort L, Cachier H (2010) Combining charcoal and elemental black carbon analysis in sedimentary archives: implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Glob Planet Chang 72:381–389CrossRefGoogle Scholar
  47. Tremblay V, Larocque-Tobler I, Sirois P (2010) Historical variability of subfossil chironomids (Diptera: Chironomidae) in three lakes impacted by natural and anthropogenic disturbances. J Paleolimnol 44:483–495CrossRefGoogle Scholar
  48. Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67CrossRefGoogle Scholar
  49. Verschuren D, Eggermonta H (2006) Quaternary paleoecology of aquatic Diptera in tropical and Southern hemisphere regions, with special reference to the Chironomidae. Quat Sci Rev 25:1926–1947CrossRefGoogle Scholar
  50. Vince G (2010) Dams for Patagonia. Science 329:382–385CrossRefGoogle Scholar
  51. Walker IR (2001) Midges: Chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 4: Zoological indicators. Kluwer, Dordrecht, p 217Google Scholar
  52. Walker IR, Oliver DR, Dillon ME (1992) The larva and habitat of Parakiefferiella Nigra Brundin (Diptera: Chironomidae). Neth J Aquat Ecol 24:527–531CrossRefGoogle Scholar
  53. Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178CrossRefGoogle Scholar
  54. Whitlock C (2001) Variations in Holocene fire frequency: a view from the western United States. Biol Environ Biol Environ 101B:65–77Google Scholar
  55. Whitlock C, Larsen C (2001) Charcoal as a fire proxy: biological techniques and indicators. In: Smol JP, Birks HJ, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht, pp 75–97Google Scholar
  56. Whitlock C, Dean W, Rosenbaum J, Stevens L, Fritz S, Bracht B, Power M (2008) A 2650-year-long record of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy data. Quat Int 188:126–138CrossRefGoogle Scholar
  57. Wiederholm T (1983) Chironomidae of the holartic region. Keys and diagnoses. Part I–Larvae 19:1–457Google Scholar
  58. Williams JJ, Brooks SJ, Gosling WD (2012) The response of chironomids to Late Pleistocene and Holocene environmental change in the eastern Bolivian Andes. J Paleolimnol. doi: 10.1007/s10933-012-9626-1 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alberto Araneda
    • 1
  • Patricia Jana
    • 1
  • Carolina Ortega
    • 1
  • Fernando Torrejón
    • 1
  • Sébastien Bertrand
    • 2
    • 3
  • Patricia Vargas
    • 1
  • Nathalie Fagel
    • 4
  • Denisse Alvarez
    • 1
  • Alejandra Stehr
    • 5
  • Roberto Urrutia
    • 1
  1. 1.Group of Paleolimnological Studies (GEP), Aquatic Systems Research Unit, Environmental Sciences Center EULA-ChileUniversity of ConcepcionConcepciónChile
  2. 2.Renard Centre of Marine GeologyUniversity of GhentGhentBelgium
  3. 3.Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA
  4. 4.Clays and Paleoclimate Research Unit, Department of GeologyUniversity of LiegeLiègeBelgium
  5. 5.Environmental Engineering Research Unit, Environmental Sciences Center EULA-ChileUniversity of ConcepcionConcepciónChile

Personalised recommendations