Journal of Paleolimnology

, Volume 51, Issue 1, pp 145–153 | Cite as

A short summary of my forty years in paleolimnology

Notes
  • 334 Downloads

References

  1. Andersson F, Olsson B (1985) Lake Gårdsjön: an acid forest lake and its catchment. Ecol Bull 37:1–336Google Scholar
  2. Battarbee RW, Mason J, Renberg I, Talling JF (1990) Palaeolimnology and lake acidification. Phil Trans R Soc Lond B 327:223–245Google Scholar
  3. Bindler R, Brännvall M-L, Renberg I (1999) Natural lead concentrations in pristine boreal forest soils and past pollution trends: a reference for critical load models. Environ Sci Technol 33:3362–3367CrossRefGoogle Scholar
  4. Bindler R, Renberg I, Anderson NJ, Appleby PG, Emteryd O, Boyle J (2001) Pb isotope ratios of lake sediments in West Greenland: inferences on pollution sources. Atmos Environ 35:4675–4685CrossRefGoogle Scholar
  5. Bindler R, Renberg I, Klaminder J (2008) Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J Paleolimnol 2008:755–770CrossRefGoogle Scholar
  6. Bindler R, Rydberg J, Renberg I (2011) Establishing natural reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J Paleolimnol 45:421–435CrossRefGoogle Scholar
  7. Boës X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. J Paleolimnol 46:75–87CrossRefGoogle Scholar
  8. Brännvall M-L, Bindler R, Renberg I, Emteryd O, Bartnicki J, Billström K (1999) The Medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environ Sci Technol 33:3362–3367CrossRefGoogle Scholar
  9. Brännvall M-L, Bindler R, Emteryd O, Renberg I (2001a) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25:421–435CrossRefGoogle Scholar
  10. Brännvall M-L, Bindler R, Emteryd O, Renberg I (2001b) Vertical distribution of atmospheric pollution lead in Swedish boreal forest soils. Water Air Soil Pollut Focus 1:357–370CrossRefGoogle Scholar
  11. Dåbakk E (1999) Near infrared spectrometry—a potential method for environmental monitoring of aquatic systems. PhD Thesis, Umeå UniversityGoogle Scholar
  12. Digerfeldt G (1972) The Post-glacial development of Lake Trummen. Regional vegetation history, water level changes and paleolimnology. Folia Limnologica Scandinavica 16:1–104Google Scholar
  13. Ek A, Renberg I (2001) Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden. J Paleolimnol 26:89–107CrossRefGoogle Scholar
  14. Ek A, Grahn O, Hultberg H, Renberg I (1995) Recovery from acidification in Lake Örvattnet, Sweden. Water Air Soil Pollut 85:1795–1800CrossRefGoogle Scholar
  15. Gälman V, Rydberg J, Sjöstedt de-Luna S, Bindler R, Renberg I (2008) Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–1082CrossRefGoogle Scholar
  16. Gälman V, Rydberg J, Bigler C (2009) Decadal diagenetic effects on δ13C and δ15N studied in varved lake sediment. Limnol Oceanogr 54:917–924CrossRefGoogle Scholar
  17. Griffin JJ, Goldberg ED (1979) Morphologies and origin of elemental carbon. Science 206:563–565CrossRefGoogle Scholar
  18. Hustedt F 1937–1939 Systematische und ökologische Untersuchungen uber die Diatomeen-Flora von Java, Bali und Sumatra. Arch Hydrobiol Suppl 15, 16Google Scholar
  19. Klaminder J, Renberg I, Bindler R (2003) Isotopic trends and background fluxes of atmospheric lead in northern Europe: Analyses of three ombrotrophic bogs from Sweden. Global Biochem Cycles 17, doi:10.1029/2002GB001921
  20. Klaminder J, Bindler R, Emteryd O, Renberg I (2005) Uptake and recycling of lead by boreal forest plants: quantitative estimates from a site in northern Sweden. Geochim Cosmochim Acta 69:2485–2496CrossRefGoogle Scholar
  21. Klaminder J, Appleby P, Crook P, Renberg I (2012) Post-deposition diffusion of 137Cs in lake sediment: implications for radiocaesium dating. Sedimentology 59:2259–2267. doi:1111/j.1365-3091.2012.01343.x CrossRefGoogle Scholar
  22. Korsman T (1999) Temporal and spatial trends of lake acidity in northern Sweden. J Paleolimnol 22:1–15CrossRefGoogle Scholar
  23. Korsman T, Nilsson M, Öhman J, Renberg I (1992) Near-infrared reflectance spectroscopy of sediments: a potential method to infer the past pH of lakes. Environ Sci Technol 26:2122–2126CrossRefGoogle Scholar
  24. Korsman T, Renberg I, Dåbakk E, Nilsson M (2001) Near-infrared spectroscopy (NIRS) in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1., Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 299–318Google Scholar
  25. Lindeberg C, Bindler R, Renberg I (2006) Natural fluctuations of mercury and lead in Greenland lake sediments. Environ Sci Technol 40:90–95CrossRefGoogle Scholar
  26. McCrone WG, Delly JG (1973) The particle atlas, II. Ann Arbor Science, Ann Arbor, p 267Google Scholar
  27. Nilsson M, Renberg I (1990) Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Appl Environ Microbiol 56:2025–2028Google Scholar
  28. Nilsson MB, Dåbakk E, Korsman T, Renberg I (1996) Quantifying relationships between near-infrared reflectance spectra of lake sediments and water chemistry. Environ Sci Technol 30:2586–2590CrossRefGoogle Scholar
  29. Norberg M, Bigler C, Renberg I (2010) Comparing pre-industrial and post-limed diatom communities in Swedish lakes, with implications for defining realistic management targets. J Paleolimnol 44:233–242CrossRefGoogle Scholar
  30. Persson J, Nilsson M, Bigler C, Brooks S, Renberg I (2007) Near-infrared spectroscopy (NIRS) of epilithic material in streams has the potential for monitoring impact from mining. Environ Sci Technol 41:2874–2880CrossRefGoogle Scholar
  31. Petterson G, Odgaard BV, Renberg I (1999) Image analysis as a method to quantify sediment components. J Paleolimnol 22:443–455CrossRefGoogle Scholar
  32. Petterson G, Renberg I, Sjöstedt-de Luna S, Arnqvist P, Anderson NJ (2010) Climatic influence of the inter-annual variability of late-Holocene minerogenic sediment supply in a boreal forest catchment. Earth Surf Process Landforms 35:390–398Google Scholar
  33. Renberg I (1976a) Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9:113–159. StockholmGoogle Scholar
  34. Renberg I (1976b) Annually laminated sediments of Lake Rudetjärn, Medelpad province, northern Sweden. GFF 98:355–360Google Scholar
  35. Renberg I (1978) Palaeolimnology and varve counts of the annually laminated sediment of Lake Rudetjärn, northern Sweden. Early Norrland 11:63–92. StockholmGoogle Scholar
  36. Renberg I (1990) A 12 600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Phil Trans R Soc Lond B 327:357–361CrossRefGoogle Scholar
  37. Renberg I, Hansson H (2008) The HTH sediment corer. J Paleolimnol 40:655–659CrossRefGoogle Scholar
  38. Renberg I, Hansson H (2010) Freeze corer No. 3 for lake sediments. J Paleolimnol 44:731–736CrossRefGoogle Scholar
  39. Renberg I, Hansson H (2011) A tripod piston corer for taking a meter-long sediment core with undisturbed sediment-water interface. J Paleolimnol 46:313–317CrossRefGoogle Scholar
  40. Renberg I, Hellberg T (1982) The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11:30–33Google Scholar
  41. Renberg I, Nilsson M (1992) Dormant bacteria in lake sediments as palaeoecological indicators. J Paleolimnol 7:127–135CrossRefGoogle Scholar
  42. Renberg I, Wik M (1884) Dating recent lake sediments by soot particle counting. Verh Internat Verein Limnol 22:712–718Google Scholar
  43. Renberg I, Wik M (1985) Carbonaceous particles in lake sediments—pollutants from fossil fuel combustion. Ambio 14:161–163Google Scholar
  44. Renberg I, Korsman T, Birks HJB (1993a) Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature 362:824–826CrossRefGoogle Scholar
  45. Renberg I, Korsman T, Anderson NJ (1993b) A temporal perspective of lake acidification in Sweden. Ambio 22:264–271Google Scholar
  46. Renberg I, Wik Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326CrossRefGoogle Scholar
  47. Renberg I, Brännvall M-L, Bindler R, Emteryd O (2000) Atmospheric lead pollution history during four millennia (2000 BC to 2000 AD) in Sweden. Ambio 29:150–156Google Scholar
  48. Renberg I, Bigler C, Bindler R, Norberg M, Rydberg J, Segerström U (2009) Environmental history: a piece in the puzzle for establishing plans for environmental management. J Environ Manage 90:2794–2800CrossRefGoogle Scholar
  49. Rosén P, Vogel H (in press) Visible and infrared spectroscopical applications in paleolimnology and Quaternary science. Encyclopedia of Quaternary Science (2nd edition), ElsevierGoogle Scholar
  50. Rosén P, Dåbakk E, Renberg I, Nilsson M, Hall R (2000) Near-infrared spectrometry (NIRS): a new tool for inferring past climate changes from lake sediments. Holocene 10:161–166CrossRefGoogle Scholar
  51. Rydberg J, Gälman V, Renberg I, Bindler R, Lambertsson L, Martinez-Cortizas A (2008) Assessing the stability of mercury and methylmercury in a varved lake sediment deposit. Environ Sci Technol 42:4391–4396CrossRefGoogle Scholar
  52. Segerström U, Renberg I, Wallin J-E (1984) Annual sediment accumulation and land use history; investigations of varved lake sediments. Verh Internat Verein Limnol 22:1396–1403Google Scholar
  53. Wik M, Renberg I (1987) Distribution in forest soils of carbonaceous particles from fossil fuel combustion. Water Air Soil Pollut 33:125–129CrossRefGoogle Scholar
  54. Wik M, Renberg I (1991a) Spheroidal carbonaceous particles as a marker for recent sediment distribution. Hydrobiologia 214:85–90CrossRefGoogle Scholar
  55. Wik M, Renberg I (1991b) Recent atmospheric deposition in Sweden of carbonaceous particles from fossil fuel combustion surveyed using lake sediments. Ambio 20:289–292Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations