Journal of Paleolimnology

, Volume 49, Issue 3, pp 363–371 | Cite as

‘Diatoms and pH reconstruction’ (1990) revisited

Original paper

Abstract

The 167 sample lake-water pH-diatom calibration data-set created as part of the Palaeolimnology Programme within the Surface Water Acidification Project (SWAP) is re-analysed numerically using nine different numerical methods, six based on simple two-way weighted-averaging (WA), and the other three involving Gaussian logit regression (GLR) and maximum-likelihood (ML) calibration, the modern analogue technique, or weighted-averaging partial least-squares regression and calibration. Root mean squared error of prediction and maximum bias were estimated for all nine methods based on 10,000 internal and 10,000 external cross-validations involving a training-set, an optimisation-set, and a test-set. The results show that WA with a monotonic deshrinking spline equals or slightly outperforms WA with linear inverse deshrinking, especially in external cross-validation. Methods that employ tolerance downweighting generally have an inferior performance except when combined with monotonic deshrinking. It appears that simple two-way WA extensively used in SWAP cannot be significantly bettered. Thanks to increased computing power, better software, and more rigorous cross-validations, GLR shows good performance, especially in external cross-validation.

Keywords

Cross-validation Gaussian logit regression Maximum-likelihood calibration Model performance Modern analogue technique Monotonic deshrinking SWAP Tolerance downweighting Weighted-averaging Weighted-averaging partial least-squares 

References

  1. Battarbee RW (1990) The causes of lake acidification, with special reference to the role of acidification. Philos Trans R Soc B Biol Sci 327:339–347CrossRefGoogle Scholar
  2. Battarbee RW, Monteith DT, Juggins S, Evans CD, Jenkins A, Simpson GL (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environ Pollut 137:135–149CrossRefGoogle Scholar
  3. Battarbee RW, Monteith DT, Juggins S, Simpson GL, Shilland EM, Flower RJ, Kreiser AM (2008) Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the UK. Holocene 18:57–67CrossRefGoogle Scholar
  4. Birks HJB (1994) The importance of pollen and diatom taxonomic precision in quantitative paleoenvironmental reconstructions. Rev Palaeobot Palynol 83:107–117CrossRefGoogle Scholar
  5. Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of Quaternary science data technical guide 5. Quaternary Research Association, Cambridge, pp 161–254Google Scholar
  6. Birks HJB (1998) Numerical tools in palaeolimnology—Progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  7. Birks HJB (2001) Maximum likelihood environmental calibration and the computer program WACALIB—a correction. J Paleolimnol 25:111–115CrossRefGoogle Scholar
  8. Birks HJB (2013) A diverse scientific life. J Paleolimnol. doi:10.1007/s10933-013-9691-0
  9. Birks HJB, Jones VJ (2012) Data-sets. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: Data handling and numerical techniques. Springer, Dordrecht, pp 93–97CrossRefGoogle Scholar
  10. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990a) Diatoms and pH reconstruction. Philos Trans R Soc B, Biol Sci 327:263–278CrossRefGoogle Scholar
  11. Birks HJB, Juggins S, Line JM (1990b) Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason BJ (ed) The Surface Waters Acidification Programme. Cambridge University Press, Cambridge, pp 301–313Google Scholar
  12. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140Google Scholar
  13. Hübener T, Dressler M, Schwarz A, Langner K, Adler S (2008) Dynamic adjustment of training sets (‘moving-window’ reconstruction) by using transfer functions in paleolimnology—a new approach. J Paleolimnol 40:79–95CrossRefGoogle Scholar
  14. Juggins S (2007) C2 Software for ecological and palaeoecological data analysis and visualisation. User Guide Version 1.5. University of Newcastle, Newcastle-upon-TyneGoogle Scholar
  15. Juggins S (2012) rioja: Analysis of Quaternary science data. Version 0.7-3. http://cran.r-project.org/web/packages/rioja/index.html
  16. Juggins S, Birks HJB (2012) Quantitative environmental reconstructions from biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: Data handling and numerical techniques. Springer, Dordrecht, pp 431–494CrossRefGoogle Scholar
  17. Köster D, Racca JMJ, Pienitz R (2004) Diatom-based inference models and reconstructions revisited: methods and transformations. J Paleolimnol 32:233–245CrossRefGoogle Scholar
  18. Line JM, Birks HJB (1990) WACALIB 2.1 a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging. J Paleolimnol 3(170):173Google Scholar
  19. Line JM, ter Braak CJF, Birks HJB (1994) WACALIB version 3.3—a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J Paleolimnol 10:147–152CrossRefGoogle Scholar
  20. Marchetto A (1994) Rescaling species optima estimated by weighted averaging. J Paleolimnol 12:155–162CrossRefGoogle Scholar
  21. Oksanen J, Läärä E, Huttunen P, Meriläinen J (1988) Estimation of pH optima and tolerances of diatoms in lake sediments by the methods of weighted averaging, least-squares and maximum likelihood, and their use for the prediction of lake acidity. J Paleolimnol 1:39–49CrossRefGoogle Scholar
  22. R Development Core Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. www.R-project.org/
  23. Racca JMJ, Philibert A, Racca R, Prairie YT (2001) A comparison between diatom-based pH inference models using artificial neural networks (ANN), weighted averaging (WA) and weighted averaging partial least-squares (WA-PLS) regressions. J Paleolimnol 26:411–422CrossRefGoogle Scholar
  24. Racca JMJ, Wild M, Birks HJB, Prairie YT (2003) Separating wheat from chaff: diatom taxon selection using an artificial neural network pruning algorithm. J Paleolimnol 29:123–133CrossRefGoogle Scholar
  25. Racca JMJ, Gregory-Eaves I, Pienitz R, Prairie YT (2004) Tailoring paleolimnological diatom-based transfer functions. Can J Fish Aquat Sci 61:2440–2454CrossRefGoogle Scholar
  26. Reid M (2005) Diatom-based models for reconstructing past water quality and productivity in New Zealand lakes. J Paleolimnol 33:13–38CrossRefGoogle Scholar
  27. Renberg I, Battarbee RW (1990) The SWAP Palaeolimnology Programme: a synthesis. In: Mason BJ (ed) The Surface Waters Acidification Programme. Cambridge University Press, Cambridge, pp 281–300Google Scholar
  28. Simpson GL (2007) Analogue methods in palaeoecology: using the analogue package. J Stat Softw 22:1–29Google Scholar
  29. Simpson GL (2012) Analogue methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins A, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: Data handling and numerical techniques. Springer, Dordrecht, pp 495–555CrossRefGoogle Scholar
  30. Simpson GL, Birks HJB (2012) Statistical learning in palaeolimnology. In: Birks HJB, Lotter AF, Juggins A, Smol JP (eds) Tracking environmental change using lake sediments, vol 5: Data handling and numerical techniques. Springer, Dordrecht, pp 249–327Google Scholar
  31. Simpson GL, Oksanen J (2012) analogue: Analogue and weighted averaging methods for palaeoecology. Version 0.9-5. http://analogue.r-forge.r-project.org/
  32. Stevenson AC, Juggins S, Birks HJB, Anderson DS, Anderson NJ, Battarbee RW, Berge F, Davis RB, Flower RJ, Haworth EY, Jones VJ, Kingston JC, Kreiser AM, Line JM, Munro MAR, Renberg I (1991) The Surface Waters Acidification Project Palaeolimnology Programme: Modern diatom/lake-water chemistry data-set. ENSIS Publishing, London, p 86Google Scholar
  33. Telford RJ, Birks HJB (2005) The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. Quat Sci Rev 24:2173–2179CrossRefGoogle Scholar
  34. Telford RJ, Birks HJB (2009) Design and evaluation of transfer functions in spatially structured environments. Quat Sci Rev 28:1309–1316CrossRefGoogle Scholar
  35. Telford RJ, Birks HJB (2011) Effect of unequal sampling along the environmental gradient on transfer functions. J Paleolimnol 46:99–106CrossRefGoogle Scholar
  36. Telford RJ, Andersson C, Birks HJB, Juggins S (2004) Biases in the estimation of transfer function prediction errors. Paleoceanography 19:PA4014Google Scholar
  37. ter Braak CJF, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78:57–72CrossRefGoogle Scholar
  38. ter Braak CJF, Juggins S (1993) Weighted averaging partial least-squares regression (WA-PLS)—an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270):485–502CrossRefGoogle Scholar
  39. ter Braak CJF, Looman CWN (1986) Weighted averaging, logit regression and the Gaussian response model. Vegetatio 65:3–11CrossRefGoogle Scholar
  40. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  41. ter Braak CJF, van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223CrossRefGoogle Scholar
  42. ter Braak CJF, Juggins S, Birks HJB, van der Voet H (1993) Weighted averaging partial least-squares regression (WA-PLS): definition and comparison with other methods for species-environment calibration. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Elsevier, Amsterdam, pp 529–560Google Scholar
  43. Wood SN (1994) Monotonic smoothing splines fitted by cross-validation. SIAM J Sci Comput 15:1126–1133CrossRefGoogle Scholar
  44. Wood SN (2012) mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. Version 1.7-17. http://cran.r-project.org/web/packages/mgcv/index.html

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiologyUniversity of BergenBergenNorway
  2. 2.Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  3. 3.Environmental Change Research CentreUniversity College LondonLondonUK
  4. 4.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  5. 5.Institute of Environmental Change and SocietyUniversity of ReginaReginaCanada

Personalised recommendations