Advertisement

Journal of Paleolimnology

, Volume 49, Issue 3, pp 513–535 | Cite as

Global change revealed by palaeolimnological records from remote lakes: a review

  • Jordi Catalan
  • Sergi Pla-Rabés
  • Alexander P. Wolfe
  • John P. Smol
  • Kathleen M. Rühland
  • N. John Anderson
  • Jiři Kopáček
  • Evžen Stuchlík
  • Roland Schmidt
  • Karin A. Koinig
  • Lluís Camarero
  • Roger J. Flower
  • Oliver Heiri
  • Christian Kamenik
  • Atte Korhola
  • Peter R. Leavitt
  • Roland Psenner
  • Ingemar Renberg
Original paper

Abstract

Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship.

Keywords

Remote lake palaeolimnology Climate change Nitrogen cascade Acidification Long-range atmospheric pollution Arctic lakes Alpine lakes High latitude High altitude 

Notes

Acknowledgments

The authors acknowledge project support from GRACCIE (CSD2007-00067), NITROPIR (CGL2010-19373), OCUPA (088/2009), the European Research Council (Starting Grant Project, 239858), the Natural Sciences and Engineering Research Council of Canada, the US Department of the Interior, the Commission for Scientific Research in Greenland, the Austrian Science Foundation (FWF R 29N10, FWF J 1963-Geo), the Alpine Research Programme of the Austrian Academy of Sciences (project DETECTIVE), and the Czech Science Foundation (project GACR 526/09/0567).

Supplementary material

10933_2013_9681_MOESM1_ESM.doc (227 kb)
Supplementary material 1 (DOC 227 kb)

References

  1. Allott TEH, Harriman R, Battarbee RW (1992) Reversibility of lake acidification at the Round Loch of Glenhead, Galloway, Scotland. Environ Pollut 77:219–225CrossRefGoogle Scholar
  2. Ampel L, Wohlfarth B, Risberg J, Veres D, Leng MJ, Tillman PK (2010) Diatom assemblage dynamics during abrupt climate change: the response of lacustrine diatoms to Dansgaard-Oeschger cycles during the last glacial period. J Paleolimnol 44:397–404CrossRefGoogle Scholar
  3. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:001903CrossRefGoogle Scholar
  4. Anderson NJ, Bugmann H, Dearing JA, Gaillard MJ (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704CrossRefGoogle Scholar
  5. Anderson RS, Jimenez-Moreno G, Carrion JS, Perez-Martinez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Rio Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–1629CrossRefGoogle Scholar
  6. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) Pb-210 dating by low background gamma-counting. Hydrobiologia 143:21–27CrossRefGoogle Scholar
  7. Arnett HA, Saros JE, Mast MA (2012) A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes. J Paleolimnol 47:277–291CrossRefGoogle Scholar
  8. Axford Y, Briner JP, Cooke CA, Francis DR, Michelutti N, Miller GH, Smol JP, Thomas EK, Wilson CR, Wolfe AP (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Natl Acad Sci USA 106:18443–18446CrossRefGoogle Scholar
  9. Bacardit M, Krachler M, Camarero L (2012) Whole-catchment inventories of trace metals in soils and sediments in mountain lake catchments in the Central Pyrenees: apportioning the anthropogenic and natural contributions. Geochimica et Cosmochimica Acta 82:52–67CrossRefGoogle Scholar
  10. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58CrossRefGoogle Scholar
  11. Baron JS, Driscoll CT, Stoddard JL, Richer EE (2011) Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61:602–613CrossRefGoogle Scholar
  12. Bartrons M, Camarero L, Catalan J (2010) Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7:1469–1479CrossRefGoogle Scholar
  13. Bartrons M, Grimalt JO, Catalan J (2011) Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes. Environ Pollut 159:1816–1822CrossRefGoogle Scholar
  14. Battarbee RW, Renberg I (1990) The surface-water acidification project (SWAP) palaeolimnology program. Philos Trans R Soc B 327:227–232CrossRefGoogle Scholar
  15. Battarbee RW, Thompson R, Catalan J, Grytnes JA, Birks HJB (2002a) Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J Paleolimnol 28:1–6CrossRefGoogle Scholar
  16. Battarbee RW, Charles DF, Bigler C, Cumming BF, Renberg I (2010) Diatoms as indicators of lake-water acidity. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 98–121CrossRefGoogle Scholar
  17. Battarbee RW, Monteith DT, Juggins S, Evans CD, Jenkins A, Simpson GL (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches. Environ Pollut 137:135–149CrossRefGoogle Scholar
  18. Battarbee RW, Grytnes JA, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A (2002b) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–179CrossRefGoogle Scholar
  19. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the Arctic—A possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  20. Bennion H, Battarbee RW, Sayer CD, Simpson GL, Davidson TA (2011) Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J Paleolimnol 45:533–544CrossRefGoogle Scholar
  21. Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present. J Geophys Res At 108:8170CrossRefGoogle Scholar
  22. Bindler R, Renberg I, Klaminder J (2008) Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J Paleolimnol 40:755–770CrossRefGoogle Scholar
  23. Bindler R, Renberg I, Anderson NJ, Appleby PG, Emteryd O, Boyle J (2001) Pb isotope ratios of lake sediments in West Greenland: inferences on pollution sources. Atmos Environ 35:4675–4685CrossRefGoogle Scholar
  24. Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Krakenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J Paleolimnol 23:91–114CrossRefGoogle Scholar
  25. Birks HJB (1998) Numerical tools in palaeolimnology—Progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  26. Blais JM, Schindler DW, Muir DCG, Kimpe LE, Donald DB, Rosenberg B (1998) Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature 395:585–588CrossRefGoogle Scholar
  27. Blais JM, Schindler DW, Muir DCG, Sharp M, Donald D, Lafreniere M, Braekevelt E, Strachan WMJ (2001) Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio 30:410–415Google Scholar
  28. Bogdal C, Schmid P, Zennegg M, Anselmetti FS, Scheringer M, Hungerbuhler K (2009) Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ Sci Technol 43:8173–8177CrossRefGoogle Scholar
  29. Bogdal C, Nikolic D, Luthi MP, Schenker U, Scheringer M, Hungerbuhler K (2010) Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environ Sci Technol 44:4063–4069CrossRefGoogle Scholar
  30. Brännvall ML, Bindler R, Renberg I, Emteryd O, Bartnicki J, Billström K (1999) The medieval metal industry was the cradle of modern large scale atmospheric lead pollution in northern Europe. Environ Sci Technol 33:4391–4395CrossRefGoogle Scholar
  31. Briner JP, Michelutti N, Francis DR, Miller GH, Axford Y, Wooller MJ, Wolfe AP (2006) A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quat Res 65:431–442CrossRefGoogle Scholar
  32. Bunting L, Leavitt PR, Weidman RP, Vinebrooke RD (2010) Regulation of the nitrogen biogeochemistry of mountain lakes by subsidies of terrestrial dissolved organic matter and the implications for climate studies. Limnol Oceanogr 55:333–345CrossRefGoogle Scholar
  33. Camarero L, Catalan J (1996) Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): dominance of storm origin and lack of altitude influence. J Geophys Res At 101:29491–29498CrossRefGoogle Scholar
  34. Camarero L, Catalan J (2012) Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat Commun 3:1118Google Scholar
  35. Camarero L, Botev I, Muri G, Psenner R, Rose N, Stuchlik E (2009) Trace elements in alpine and arctic lake sediments as a record of diffuse atmospheric contamination across Europe. Freshw Biol 54:2518–2532CrossRefGoogle Scholar
  36. Camarero L, Masque P, Devos W, Ani-Ragolta I, Catalan J, Moor HC, Pla S, Sanchez-Cabeza JA (1998) Historical variations in lead fluxes in the Pyrenees (northeast Spain) from a dated lake sediment core. Water Air Soil Pollut 105:439–449CrossRefGoogle Scholar
  37. Carcaillet C, Ali AA, Blarquez O, Genries A, Mourier B, Bremond L (2009) Spatial variability of fire history in subalpine forests: from natural to cultural regimes. Ecoscience 16:1–12CrossRefGoogle Scholar
  38. Carpenter SR, Brock WA (2011) Early warnings of unknown nonlinear shifts: a nonparametric approach. Ecology 92:2196–2201CrossRefGoogle Scholar
  39. Catalan J, Pla S, Garcia J, Camarero L (2009) Climate and CO2 saturation in an alpine lake throughout the Holocene. Limnol Oceanogr 54:2542–2552CrossRefGoogle Scholar
  40. Catalan J, Pla S, Rieradevall M, Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes A, Agusti-Panareda A, Thompson R (2002a) Lake Redo ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J Paleolimnol 28:129–145CrossRefGoogle Scholar
  41. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik P, Buchaca T, Camarero L, Goudsmit GH, Kopáček J, Lemcke G, Livingstone DM, Muller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002b) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46CrossRefGoogle Scholar
  42. Chapman WL, Walsh JE (1993) Recent variations of sea ice and air-temperature in high-latitudes. Bull Am Meteorol Soc 74:33–47CrossRefGoogle Scholar
  43. Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:L14801Google Scholar
  44. Cooke CA, Balcom PH, Biester H, Wolfe AP (2009) Over three millennia of mercury pollution in the Peruvian Andes. Proc Natl Acad Sci USA 106:8830–8834CrossRefGoogle Scholar
  45. Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596CrossRefGoogle Scholar
  46. Curtis CJ, Juggins S, Clarke G, Battarbee RW, Kernan M, Catalan J, Thompson R, Posch M (2009) Regional influence of acid deposition and climate change in European mountain lakes assessed using diatom transfer functions. Freshw Biol 54:2555–2572CrossRefGoogle Scholar
  47. De Jong R, Kamenik C (2011) Validation of a chrysophyte stomatocyst-based cold-season climate reconstruction from high-Alpine Lake Silvaplana, Switzerland. J Quat Sci 26:268–275CrossRefGoogle Scholar
  48. Debinski DM, VanNimwegen RE, Jakubauskas ME (2006) Quantifying relationships between bird and butterfly community shifts and environmental change. Ecol Appl 16:380–393CrossRefGoogle Scholar
  49. Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-eighteenth century environmental change in high Arctic ecosystems. Science 266:416–419CrossRefGoogle Scholar
  50. Ek AS, Renberg I (2001) Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden. J Paleolimnol 26:89–107CrossRefGoogle Scholar
  51. Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837CrossRefGoogle Scholar
  52. Fernandez P, Vilanova RM, Martinez C, Appleby P, Grimalt JO (2000) The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environ Sci Technol 34:1906–1913CrossRefGoogle Scholar
  53. Flower RJ, Battarbee RW (1983) Diatom evidence for recent acidification of two Scottish lochs. Nature 305:130–133CrossRefGoogle Scholar
  54. Foster KL, Kimpe LE, Brimble SK, Liu HJ, Mallory ML, Smol JP, Macdonald RW, Blais JM (2011) Effects of seabird vectors on the fate, partitioning, and signatures of contaminants in a High Arctic ecosystem. Environ Sci Technol 45:10053–10060CrossRefGoogle Scholar
  55. Gälman V, Rydberg J, Shchukarev A, Sjoberg S, Martínez-Cortizas A, Bindler R, Renberg I (2009) The role of iron and sulfur in the visual appearance of lake sediment varves. J Paleolimnol 42:141–153CrossRefGoogle Scholar
  56. Galloway JN, Schlesinger WH, Levy H, Michaels A, Schnoor JL (1995) Nitrogen-fixation—Anthropogenic enhancement-environmental response. Global Biogeochem Cycles 9:235–252CrossRefGoogle Scholar
  57. Garcia-Reyero N, Grau E, Castillo M, De Alda MJL, Barcelo D, Pina B (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20:1152–1158CrossRefGoogle Scholar
  58. Giesecke T, Bennett KD, Birks HJB, Bjune AE, Bozilova E, Feurdean A, Finsinger W, Froyd C, Pokorny P, Rosch M, Seppä H, Tonkov S, Valsecchi V, Wolters S (2011) The pace of Holocene vegetation change—testing for synchronous developments. Quat Sci Rev 30:2805–2814CrossRefGoogle Scholar
  59. Grimalt JO, Fernandez P, Berdie L, Vilanova RM, Catalan J, Psenner R, Hofer R, Appleby PG, Rosseland BO, Lien L, Massabuau JC, Battarbee RW (2001) Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environ Sci Technol 35:2690–2697CrossRefGoogle Scholar
  60. Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324:1288CrossRefGoogle Scholar
  61. Heaton THE, Wynn P, Tye AM (2004) Low N-15/N-14 ratios for nitrate in snow in the High Arctic (79° N). Atmos Environ 38:5611–5621CrossRefGoogle Scholar
  62. Heiri O, Lotter AF, Hausmann S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484CrossRefGoogle Scholar
  63. Hobbie JE, Carpenter SR, Grimm NB, Gosz JR, Seastedt TR (2003) The US long term ecological research program. Bioscience 53:21–32CrossRefGoogle Scholar
  64. Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot E, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 5:e10026CrossRefGoogle Scholar
  65. Hochheim KP, Barber DG (2010) Atmospheric forcing of sea ice in Hudson Bay during the fall period, 1980–2005. J Geophys Res Oceans 115:C05009CrossRefGoogle Scholar
  66. Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548CrossRefGoogle Scholar
  67. Huber K, Weckstrom K, Drescher-Schneider R, Knoll J, Schmidt J, Schmidt R (2010) Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Langsee (Austria). J Paleolimnol 43:131–147CrossRefGoogle Scholar
  68. Kamenik C, Schmidt R (2005) Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489CrossRefGoogle Scholar
  69. Karlsson J, Christensen TR, Crill P, Forster J, Hammarlund D, Jackowicz-Korczynski M, Kokfelt U, Roehm C, Rosen P (2010) Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment. J Geophys Res Biogeosci 115. doi: 10.1029/2010JG001305
  70. Klaminder J, Bindler R, Emteryd O, Renberg I (2005) Uptake and recycling of lead by boreal forest plants: quantitative estimates from a site in northern Sweden. Geochimica et Cosmochimica Acta 69:2485–2496CrossRefGoogle Scholar
  71. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  72. Koinig KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby P, Lami A, Prazakova M, Rose N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine lake (Gossenkollesee, Austria) over the last two centuries the influence of air temperature on biological parameters. J Paleolimnol 28:147–160CrossRefGoogle Scholar
  73. Kokfelt U, Rosen P, Schoning K, Christensen TR, Foerster J, Karlsson J, Reuss N, Rundgren M, Callaghan TV, Jonasson C, Hammarlund D (2009) Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Glob Change Biol 15:1652–1663CrossRefGoogle Scholar
  74. Kopáček J, Posch M (2011) Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems. Glob Biogeochem Cycles 25:GB2017CrossRefGoogle Scholar
  75. Kopáček J, Maresova M, Hejzlar J, Norton SA (2007) Natural inactivation of phosphorus by aluminium in preindustrial lake sediments. Limnol Oceanogr 52:1147–1155CrossRefGoogle Scholar
  76. Kopáček J, Hejzlar J, Vrba J, Stuchlik E (2011) Phosphorus loading of mountain lakes: terrestrial export and atmospheric deposition. Limnol Oceanogr 56:1343–1354CrossRefGoogle Scholar
  77. Krug EC, Frink CR (1983) Acid-rain on acid soil—a new perspective. Science 221:520–525CrossRefGoogle Scholar
  78. Laing TE, Pienitz R, Payette S (2002) Evaluation of limnological responses to recent environmental change and caribou activity in the Riviere George Region, northern Quebec, Canada. Arct Antarct Alp Res 34:454–464CrossRefGoogle Scholar
  79. Lami A, Marchetto A, Musazzi S, Salerno F, Tartari G, Guilizzoni P, Rogora M, Tartari GA (2010) Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia 648:189–205CrossRefGoogle Scholar
  80. Leavitt PR, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson DA (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–2069CrossRefGoogle Scholar
  81. Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, Rühland K, Rusak JA, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348CrossRefGoogle Scholar
  82. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  83. Lindeberg C, Bindler R, Bigler C, Rosén P, Renberg I (2007) Mercury pollution trends in subarctic lakes in the northern Swedish mountains. Ambio 36:401–405CrossRefGoogle Scholar
  84. Lindeberg C, Bindler R, Renberg I, Emteryd O, Karlsson E, Anderson NJ (2006) Natural fluctuations of mercury and lead in Greenland Lake sediments. Environ Sci Technol 40:90–95CrossRefGoogle Scholar
  85. Monteith DT, Evans CD (2005) The United Kingdom acid waters monitoring network: a review of the first 15 years and introduction to the special issue. Environ Pollut 137:3–13CrossRefGoogle Scholar
  86. Norton SA, Perry RH, Saros JE, Jacobson GL, Fernandez IJ, Kopáček J, Wilson TA, SanClements MD (2011) The controls on phosphorus availability in a boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122CrossRefGoogle Scholar
  87. Parr TW, Sier ARJ, Battarbee RW, Mackay A, Burgess J (2003) Detecting environmental change: science and society—perspectives on long-term research and monitoring in the twenty first century. Sci Total Environ 310:1–8CrossRefGoogle Scholar
  88. Pelachs A, Julia R, Perez-Obiol R, Manuel Soriano J, Bal M-C, Cunill R, Catalan J (2011) Potential influence of Bond events on mid-Holocene climate and vegetation in southern Pyrenees as assessed from Burg Lake LOI and pollen records. Holocene 21:95–104CrossRefGoogle Scholar
  89. Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6CrossRefGoogle Scholar
  90. Perren BB, Douglas MSV, Anderson NJ (2009) Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. J Paleolimnol 42:233–247CrossRefGoogle Scholar
  91. Perren BB, Wolfe AP, Cooke CA, Kjær KH, Mazzucchi D, Steig EJ (2012) Twentieth-century warming revives the world’s northernmost lake. Geology 40:1003–1006CrossRefGoogle Scholar
  92. Pla-Rabes S, Catalan J (2011) Deciphering chrysophyte responses to climate seasonality. J Paleolimnol 46:139–150CrossRefGoogle Scholar
  93. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278CrossRefGoogle Scholar
  94. Pla S, Monteith D, Flower R, Rose N (2009) The recent palaeolimnology of a remote Scottish loch with special reference to the relative impacts of regional warming and atmospheric contamination. Freshw Biol 54:505–523CrossRefGoogle Scholar
  95. Prowse T, Alfredsen K, Beltaos S, Bonsal B, Duguay C, Korhola A, McNamara J, Vincent WF, Vuglinsky V, Weyhenmeyer GA (2011a) Arctic freshwater ice and its climatic role. Ambio 40:46–52CrossRefGoogle Scholar
  96. Prowse T, Alfredsen K, Beltaos S, Bonsal B, Duguay C, Korhola A, McNamara J, Pienitz R, Vincent WF, Vuglinsky V, Weyhenmeyer GA (2011b) Past and future changes in Arctic lake and river ice. Ambio 40:53–62CrossRefGoogle Scholar
  97. Psenner R, Schmidt R (1992) Climate-driven pH control of remote Alpine lakes and effects of acid deposition. Nature 356:781–783CrossRefGoogle Scholar
  98. Renberg I, Wik Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326CrossRefGoogle Scholar
  99. Renberg I, Brannvall ML, Bindler R, Emteryd O (2000) Atmospheric lead pollution history during four millennia (2000 BC–2000 AD) in Sweden. Ambio 29:150–156Google Scholar
  100. Renberg I, Brannvall ML, Bindler R, Emteryd O (2002) Stable lead isotopes and lake sediments—a useful combination for the study of atmospheric lead pollution history. Sci Total Environ 292:45–54CrossRefGoogle Scholar
  101. Rockström J, Steffen W, Noone K, Persson A, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  102. Rose NL (1995) Carbonaceous particle record in lake-sediments from the Arctic and other remote areas of the Northern-hemisphere. Sci Total Environ 160–61:487–496CrossRefGoogle Scholar
  103. Rose NL, Yang H, Turner SD, Simpson GL (2012) An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochimica et Cosmochimica Acta 82:113–135CrossRefGoogle Scholar
  104. Rouillard A, Rosen P, Douglas MSV, Pienitz R, Smol JP (2011) A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment. J Paleolimnol 46:187–202CrossRefGoogle Scholar
  105. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554CrossRefGoogle Scholar
  106. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754Google Scholar
  107. Rydberg J, Gälman V, Renberg I, Bindler R, Lambertsson L, Martínez-Cortizas A (2008) Assessing the stability of mercury and methylmercury in a varved lake sediment deposit. Environ Sci Technol 42:4391–4396CrossRefGoogle Scholar
  108. Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1689CrossRefGoogle Scholar
  109. Saros JE, Clow DW, Blett T, Wolfe AP (2011) Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records. Water Air Soil Pollut 216:193–202CrossRefGoogle Scholar
  110. Saros JE, Stone JR, Pederson GT, Slemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleo-ecological approaches. Ecology 40:2155–2164CrossRefGoogle Scholar
  111. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348CrossRefGoogle Scholar
  112. Schindler DE, Knapp RA, Leavitt PR (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4:308–321CrossRefGoogle Scholar
  113. Schmid P, Bogdal C, Bluthgen N, Anselmetti FS, Zwyssig A, Hungerbuhler K (2011) The missing piece: sediment records in remote mountain lakes confirm glaciers being secondary sources of persistent organic pollutants. Environ Sci Technol 45:203–208CrossRefGoogle Scholar
  114. Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120CrossRefGoogle Scholar
  115. Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196CrossRefGoogle Scholar
  116. Schmidt R, Roth M, Tessadri R, Weckstroem K (2008) Disentangling late-Holocene climate and land use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. J Paleolimnol 40:453–469CrossRefGoogle Scholar
  117. Seekell DA, Carpenter SR, Pace ML (2011) Conditional heteroscedasticity as a leading indicator of ecological regime shifts. Am Nat 178:442–451CrossRefGoogle Scholar
  118. Shippley B (2000) Cause and correlation in biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  119. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley-Blackwell publishing, Oxford 383 ppGoogle Scholar
  120. Smol JP (2010) The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshw Biol 55(Supp. 1):43–59CrossRefGoogle Scholar
  121. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate using lake sediments. Front Ecol Environ 5:466–474CrossRefGoogle Scholar
  122. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402CrossRefGoogle Scholar
  123. Sommaruga-Wögrath S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R (1997) Temperature effects on the acidity of remote alpine lakes. Nature 387:64–67CrossRefGoogle Scholar
  124. Sommaruga R (2010) Preferential accumulation of carotenoids rather than of mycosporine-like amino acids in copepods from high altitude Himalayan lakes. Hydrobiologia 648:143–156CrossRefGoogle Scholar
  125. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36:614–621CrossRefGoogle Scholar
  126. Steffen W, Grinevald J, Crutzen P, McNeill J (2011a) The Anthropocene: conceptual and historical perspectives. Philos T R Soc A 369:842–867CrossRefGoogle Scholar
  127. Steffen W, Persson A, Deutsch L, Zalasiewicz J, Williams M, Richardson K, Crumley C, Crutzen P, Folke C, Gordon L, Molina M, Ramanathan V, Rockstrom J, Scheffer M, Schellnhuber HJ, Svedin U (2011b) The Anthropocene: from global change to planetary stewardship. Ambio 40:739–761CrossRefGoogle Scholar
  128. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton 584 ppGoogle Scholar
  129. Stuchlík E, Appleby P, Bitušík P, Curtis C, Fott J, Kopáček J, Pražáková M, Rose N, Strunecký O, Wright RF (2002) Reconstruction of long-term changes in lake water chemistry, zooplankton and benthos of a small, acidified high-mountain lake: magic modelling and palaeolimnological analysis. Water Air Soil Poll Focus 2:127–138CrossRefGoogle Scholar
  130. Thies H, Nickus U, Mair V, Tessadri R, Tait D, Thaler B, Psenner R (2007) Unexpected response of high alpine lake waters to climate warming. Environ Sci Technol 41:7424–7429CrossRefGoogle Scholar
  131. Thomas EK, Axford Y, Briner JP (2008) Rapid twentieth century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. J Paleolimnol 40:507–517CrossRefGoogle Scholar
  132. Thompson R, Ventura M, Camarero L (2009) On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change. Freshw Biol 54:2433–2451CrossRefGoogle Scholar
  133. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549CrossRefGoogle Scholar
  134. van Hardenbroek M, Heiri O, Parmentier FJW, Bastviken D, Ilyashuk BP, Wiklund JA, Hall RI, Lotter AF (2012) Evidence for past variations in methane availability in a Siberian thermokarst lake based on d13C of chitinous invertebrate remains Quat Sci Rev. doi: 10.1016/j.quascirev.2012.04.009
  135. Wang L, Lu HY, Liu JQ, Gu ZY, Mingram J, Chu GQ, Li JJ, Roiual P, Negendank JFW, Han JT, Liu TS (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6,000 calendar years BP. J Geophys Res At 113:D21101CrossRefGoogle Scholar
  136. Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar-regions. Ambio 22:10–18Google Scholar
  137. Weckström J, Snyder JA, Korhola A, Laing TE, MacDonald GM (2003) Diatom inferred acidity history of 32 lakes on the Kola Peninsula, Russia. Water Air Soil Pollut 149:339–361CrossRefGoogle Scholar
  138. Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sagistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30:261–272CrossRefGoogle Scholar
  139. Wilson CR, Michelutti N, Cooke CA, Briner JP, Wolfe AP, Smol JP (2012) Arctic lake ontogeny across multiple interglaciations. Quat Sci Rev 31:112–126CrossRefGoogle Scholar
  140. Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the Last Glacial-Interglacial Transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440CrossRefGoogle Scholar
  141. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254CrossRefGoogle Scholar
  142. Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc Lond B Biol Sci 276:427–435CrossRefGoogle Scholar
  143. Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7CrossRefGoogle Scholar
  144. Wolfe AP, Cooke CA, Hobbs WO (2006) Are current rates of atmospheric nitrogen deposition influencing lakes in the Eastern Canadian Arctic? Arct Antarct Alp Res 38:465–476CrossRefGoogle Scholar
  145. Wookey PA, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15:1153–1172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jordi Catalan
    • 1
    • 2
  • Sergi Pla-Rabés
    • 2
    • 1
  • Alexander P. Wolfe
    • 3
  • John P. Smol
    • 4
  • Kathleen M. Rühland
    • 4
  • N. John Anderson
    • 5
  • Jiři Kopáček
    • 6
  • Evžen Stuchlík
    • 7
  • Roland Schmidt
    • 8
  • Karin A. Koinig
    • 9
  • Lluís Camarero
    • 2
  • Roger J. Flower
    • 10
  • Oliver Heiri
    • 11
  • Christian Kamenik
    • 12
  • Atte Korhola
    • 13
  • Peter R. Leavitt
    • 14
  • Roland Psenner
    • 9
  • Ingemar Renberg
    • 15
  1. 1.CREAF, Cerdanyola del VallèsCataloniaSpain
  2. 2.CSIC-CEAB, Biogeodynamics and Biodiversity groupBlanes, CataloniaSpain
  3. 3.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  4. 4.Paleoecological Environmental Assessment and Research Lab (PEARL), Department of BiologyQueen’s UniversityKingstonCanada
  5. 5.Department of GeographyLoughborough UniversityLoughboroughUK
  6. 6.Biology Centre ASCRInstitute of HydrobiologyČeské BudějoviceCzech Republic
  7. 7.Faculty of Science, Institute for Environmental StudiesCharles University in PragueBlatnáCzech Republic
  8. 8.Institute for LimnologyMondseeAustria
  9. 9.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  10. 10.Environmental Change Research CentreUniversity College LondonLondonUK
  11. 11.Institute of Plant Sciences and Oeschger Centre for Climate Change ResearchBernSwitzerland
  12. 12.Institute of Geography and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  13. 13.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  14. 14.Limnology Laboratory, Department of BiologyUniversity of ReginaReginaCanada
  15. 15.Department of Ecology and Environmental ScienceUmeå UniversityUmeaSweden

Personalised recommendations