Journal of Paleolimnology

, Volume 49, Issue 4, pp 633–646 | Cite as

Holocene changes in climate and land use drove shifts in the diversity of testate amoebae in a subalpine pond

  • France OrisEmail author
  • Mariusz Lamentowicz
  • Aurélie Genries
  • Brice Mourier
  • Olivier Blarquez
  • Adam A. Ali
  • Laurent Bremond
  • Christopher Carcaillet
Original paper


Testate amoebae that inhabit peat are sensitive indicators of water table position. In this study, we used testate amoebae in sediments from a mire in the western Alps (Lac du Thyl) to: (1) reconstruct the hydrology of the site over the last 7,000 years, (2) determine how hydrological changes affected testate amoebae diversity and (3) infer past trophic state shifts. The study site is located in one of the driest valleys of the Alps and is thus very sensitive to hydrological changes. Our study revealed that the water table depth increased (dry conditions) between 5,800 and 4,000 cal year BP. This triggered establishment of a Sphagnum-type peat and acidic conditions from 5,700 to 4,000 cal year BP. These processes were independent of ongoing transformations of the terrestrial vegetation and soil in the catchment area. After 1,690 cal year BP, the depth to the water table decreased (wetter conditions) and a minerotrophic fen developed. At the same time, the diversity of testate amoebae increased, probably as a result of deforestation that supported the expansion of grassland. Climate and land use were apparently more important factors controlling the lake hydrology than were changes in vegetation and soil in the catchment. Testate amoebae diversity was linked to land cover. Changes in pH were controlled indirectly by external forcing (climate), but more directly by fluctuations in the level of the water table (internal forcing) and autogenous expansion of Sphagnum.


Testate amoebae Water table pH Diversity Climate Deforestation Ecosystem function Fire Soil Vegetation 



Financial support to CC was provided by the Institut National des Sciences de l’Univers (INSU-CNRS, France), through the ECCO National Program. Funding to AG came from the University of Montpellier 2, to BM from the University of Savoie, to OB from the Ecole Pratique des Hautes Etudes and to ML from the Foundation for Polish Science (FNP, Outgoing Fellowship KOLUMB and Reintegration grant). We are grateful to Sandrine Subitani for her help during the laboratory work and Michelle Garneau for her helpful comments about the manuscript. We thank Mark Brenner and two anonymous reviewers. FO, CC and ML wrote the paper. FO collected the testate amoebae data. The modeling, using the transfer function was conducted by ML. AAA and LB co-supervised the Master’s thesis of FO. Other authors contributed to the data and commented on the interpretation of the results.


  1. Almquist H, Dieffenbacher-Krall AC, Flanagan-Brown R, Sanger D (2001) The Holocene record of lake levels of Mansell Pond, central Maine, USA. Holocene 11:189–201CrossRefGoogle Scholar
  2. Asada T, Warner BG, Pojar J (2003) Environmental factors responsible for shaping an open peatland—forest complex on the hypermaritime north coast of British Columbia. Can J For Res 33:2380–2394CrossRefGoogle Scholar
  3. Birks HJB (1995) Quantitative palaeoenvironmental peconstructions. In: Maddy D, Brew JS (eds) Statistical;odelling of auaternaryscience data. Quaternary Research Associacion, Cambridge, pp 161–254Google Scholar
  4. Birks HJB (1998) Numerical tools in palaeolimnology: progress, potentialities, and problems. J Paleolimnol 20:307–332CrossRefGoogle Scholar
  5. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  6. Blarquez O (2011) Feux, climat et forêts subalpines dans les Alpes à l’Holocène. PhD thesis, Ecole Pratique des Hautes Etudes, Paris, p 206Google Scholar
  7. Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2010) Trees in the subalpine belt since 11 700 cal. BP: origin, expansion and alteration of the modern forest. Holocene 20:139–146CrossRefGoogle Scholar
  8. Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15:277–289CrossRefGoogle Scholar
  9. Carcaillet C (1998) A spatially precise study of Holocene fire history, climate and human impact within the Maurienne valley, North French Alps. J Ecol 86:384–396CrossRefGoogle Scholar
  10. Carcaillet C, Brun J–J (2000) Changes in landscape structure in the northwestern Alps over the last 7000 Years: lessons from soil charcoal. J Veg Sci 11:705–714CrossRefGoogle Scholar
  11. Carcaillet C, Ali AA, Blarquez O, Genries A, Mourier B, Bremond L (2009) Spatial variability of fire history in subalpine forests: from natural to cultural regimes. Ecoscience 16:1–12CrossRefGoogle Scholar
  12. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. Quaternary Research Association, London, p 147Google Scholar
  13. Cholet J, Magnon G (2010) Tourbières des montagnes françaises: nouveaux éléments de connaissance, de réflexion & de gestion. Pôle-relais Tourbières/Fédération des Conservatoires d’Espaces Naturels, 188 ppGoogle Scholar
  14. David F, Barbero M (2001) Les érables dans l’étage subalpin : une longue histoire = Maples at the sub-Alpine vegetation belt: a long history. C R Acad Sci Serie III Sci Vie 324:159–164CrossRefGoogle Scholar
  15. Digerfeldt G, de Beaulieu J-L, Guiot J, Mouthon J (1997) Reconstruction and paleoclimatic interpretation of Holocene lake-level changes in Lac de Saint-Léger, Haute-Provence, southeast France. Palaeogeogr Palaeoclim Palaeoecol 136:231–258CrossRefGoogle Scholar
  16. Escobar J, Brenner M, Whitmore T, Kenney W, Curtis J (2008) Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. J Paleolimnol 40:715–731CrossRefGoogle Scholar
  17. Feller MC (2009) Deforestation and nutrient loading to fresh waters. In: GE Likens (ed) Encyclopedia of inland waters. Elsevier, p 6492Google Scholar
  18. Franzén LG (2006) Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? Mires Peat 1Google Scholar
  19. Genries A, Mercier L, Lavoie M, Muller SD, Radakovitch O, Carcaillet C (2009a) The effect of fire frequency on local cembra pine populations. Ecology 90:476–486CrossRefGoogle Scholar
  20. Genries A, Muller SD, Mercier L, Bircker L, Carcaillet C (2009b) Fires control spatial variability of subalpine vegetation dynamics during the Holocene in the Maurienne valley (French Alps). Ecoscience 16:13–22CrossRefGoogle Scholar
  21. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  22. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  23. Heck KL, van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461CrossRefGoogle Scholar
  24. Hendon D, Charman DJ (1997) The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. Holocene 7:199–205CrossRefGoogle Scholar
  25. Higuera PE (2008) MCAgeDepth 0.1: probabilistic age-depth models for continuous sediment records. p 7Google Scholar
  26. Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219CrossRefGoogle Scholar
  27. Hilbert DW, Roulet N, Moore T (2000) Modelling and analysis of peatlands as dynamical systems. J Ecol 88:230–242CrossRefGoogle Scholar
  28. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 996 ppGoogle Scholar
  29. Lamentowicz M, Forysiak J, Balwierz Z, Kloss M, Kittel P, Żurek S, Pawlyta J (2009) Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland. Hydrobiologia 631:213–230CrossRefGoogle Scholar
  30. Lamentowicz M, Lamentowicz Ł, van der Knaap W, Gąbka M, Mitchell E (2010a) Contrasting species: environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen–bog Gradient. Microb Ecol 59:499–510CrossRefGoogle Scholar
  31. Lamentowicz M, Van der Knaap P, Lamentowicz Ł, Van Leeuwen JFN, Mitchell EAD, Goslar T, Kamenik C (2010b) A near-annual palaeohydrological study based on testate amoebae from an Alpine mire: surface wetness and the role of climate during the instrumental period. J Quat Sci 24:190–202CrossRefGoogle Scholar
  32. Lamentowicz Ł, Gąbka M, Rusińska A, Sobczyński T, Owsianny PM, Lamentowicz M (2011) Testate amoeba (Arcellinida, Euglyphida) ecology along a poor-rich gradient in fens of western Poland. Int Rev Hydrobiol 96:356–380CrossRefGoogle Scholar
  33. Lavoie M, Richard PJH (2000) Postglacial water-level changes of a small lake in southern Québec, Canada. Holocene 10:621–634CrossRefGoogle Scholar
  34. Magny M, Miramont C, Sivan O (2002) Assessment of the impact of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of palaeohydrological records. Palaeogeogr Palaeoclimatol Palaeoecol 186:47–59CrossRefGoogle Scholar
  35. Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization in an arctic wet sedge tundra. Arct Antarct Alp Res 36:78–83CrossRefGoogle Scholar
  36. Mitchell EAD, Payne R, Lamentowicz M (2008) Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol 40:603–618CrossRefGoogle Scholar
  37. Mitchell EAD, Payne R, van der Knaap WO, Lamentowicz Ł, Gąbka M, Lamentowicz M (2013) The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH. Quat Res 79:6–13Google Scholar
  38. Mitsch JM, Gosselink JG (2007) Wetlands. Wiley, New Jersey 582 ppGoogle Scholar
  39. Mourier B, Poulenard J, Chauvel C, Faivre P, Carcaillet C (2008) Distinguishing subalpine soil types using extractible Al and Fe fractions and REE geochemistry. Geoderma 145:107–120CrossRefGoogle Scholar
  40. Mourier B, Poulenard J, Carcaillet C, Williamson D (2010) Soil evolution and subalpine ecosystem changes in the French Alps inferred from geochemical analysis of lacustrine sediments. J Paleolimnol 44:571–587CrossRefGoogle Scholar
  41. Muller SD, Miramont C, Bruneton H, Carré M, Sottocornola M, Court-Picon M, De Beaulieu JL, Nakagawa T, Schevin P (2012) A palaeoecological perspective for the conservation and restoration of wetland plant communities in the central French Alps, with particular emphasis on alder carr vegetation. Rev Palaeobot Palynol 171:124–139CrossRefGoogle Scholar
  42. Ortu E, Brewer S, Peyron O (2006) Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives. J Quat Sci 21:615–627CrossRefGoogle Scholar
  43. Ortu E, Peyron O, Bordon A, de Beaulieu JL, Siniscalco C, Caramiello R (2008) Lateglacial and Holocene climate oscillations in the South-western Alps: an attempt at quantitative reconstruction. Quat Int 190:71–88CrossRefGoogle Scholar
  44. Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202CrossRefGoogle Scholar
  45. Payne R, Mitchell ED (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495CrossRefGoogle Scholar
  46. Price MF (2003) Why mountain forests are important. Forest Chron 79:219–222Google Scholar
  47. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  48. Rey P-J, Thirault E (1999) Le peuplement des vallées alpines au Néolithique : les exemples de la Maurienne et de la Tarentaise (Savoie). In: A Beeching (ed) Circulations et identités culturelles alpines à la fin de la Préhistoire. Matériaux pour une étude (programme collectif CIRCALP 1997/1998), Centre d’Archéologie Préhistorique, Valence, pp 501–518Google Scholar
  49. Runhaar H, Witte F, Verburg P (1997) Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands 17:528–538CrossRefGoogle Scholar
  50. Schumacher S, Bugmann H (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Global Change Bio 12:1435–1450CrossRefGoogle Scholar
  51. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  52. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105CrossRefGoogle Scholar
  53. Simpson E (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  54. Sjögren P, van der Knaap WO, van Leeuwen JFN, Andrič M, Grünig A (2007) The occurrence of an upper decomposed peat layer, or “kultureller Trockenhorizont”, in the Alps and Jura Mountains. Mires and Peat 2:1–14Google Scholar
  55. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  56. Swindles GT, Blundell A, Roe HM, Hall VA (2009) A 4500-year proxy climate record from peatlands in the North of Ireland: the identification of widespread summer ‘drought phases’? Quat Sci Rev 29:1577–1589CrossRefGoogle Scholar
  57. Van der Knaap WO, Lamentowicz M, van Leeuwen JFN, Hangartner S, Leuenberger M, Mauquoy D, Goslar T, Mitchell EAD, Lamentowicz Ł, Kamenik C (2011) A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quat Sci Rev 30:3467–3480CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • France Oris
    • 1
    Email author
  • Mariusz Lamentowicz
    • 3
    • 4
    • 5
    • 6
  • Aurélie Genries
    • 7
  • Brice Mourier
    • 8
  • Olivier Blarquez
    • 2
    • 7
  • Adam A. Ali
    • 1
  • Laurent Bremond
    • 1
    • 2
  • Christopher Carcaillet
    • 1
    • 2
    • 7
  1. 1.Centre for Bio-Archeology and Ecology (UMR5059 CNRS), Institut de Botanique Université Montpellier 2MontpellierFrance
  2. 2.Paleoenvironnements and Chronoecology (PALECO, EPHE)Institut de BotaniqueMontpellierFrance
  3. 3.Department of Biogeography and Palaeoecology, Faculty of Geographical and Geological SciencesAdam Mickiewicz UniversityPoznańPoland
  4. 4.Swiss Federal Research Institute WSLWetlands Research GroupLausanneSwitzerland
  5. 5.Laboratoire des Systèmes EcologiquesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  6. 6.Laboratory of Soil Biology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  7. 7.Center for Forest Research and NSERC-UQAT-UQÀM Industrial Chair in Sustainable Forest Management, Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada
  8. 8.Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et AnthropisésVaulx-en-VelinFrance

Personalised recommendations