Journal of Paleolimnology

, Volume 49, Issue 2, pp 155–170 | Cite as

Late Holocene thermokarst variability inferred from diatoms in a lake sediment record from the Lena Delta, Siberian Arctic

  • B. K. BiskabornEmail author
  • U. Herzschuh
  • D. Bolshiyanov
  • L. Savelieva
  • R. Zibulski
  • B. Diekmann
Original Paper


Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level.


Diatoms Aquatic ecosystem Arga Complex Paleolimnology Paleoecology Lake sediment core 



This study was financed by the Alfred Wegener Institute for Polar and Marine Research (AWI) and the POLMAR Graduate School. Our laboratory analyses were conducted at the AWI, at the GeoForschungsZentrum in Potsdam and at the University of Potsdam, in cooperation with Roland Oberhänsli. We thank John Smol for providing helpful literature. We are also grateful to all participants in the helicopter expedition for their dedication. Special thanks go to two anonymous reviewers, whose comments and suggestions greatly improved the quality of the paper.


  1. ACIA (2004) Impacts of a warming Arctic—Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Anderson NJ (2000) Diatoms, temperature and climatic change. Eur J Phycol 35:307–314Google Scholar
  3. Andreev A, Tarasov P, Schwamborn G, Ilyashuk B, Ilyashuk E, Bobrov A, Klimanov V, Rachold V, Hubberten HW (2004) Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia. Palaeogeogr Palaeoclimatol Palaeoecol 209:197–217CrossRefGoogle Scholar
  4. Andreev AA, Schirrmeister L, Tarasov PE, Ganopolski A, Brovkin V, Siegert C, Wetterich S, Hubberten HW (2011) Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quat Sci Rev 30:2182–2199CrossRefGoogle Scholar
  5. Are F, Reimnitz E (2000) An overview of the Lena River Delta setting: geology, tectonics, geomorphology, and hydrology. J Coast Res 16:1083–1093Google Scholar
  6. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  7. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht, pp 155–202Google Scholar
  8. Bennion H, Sayer CD, Tibby J, Carrick HJ (2010) Diatoms as indicators of environmental change in shallow lakes. In: Smol JP, Stoermer EF (eds) The Diatoms: Application for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp 152–173CrossRefGoogle Scholar
  9. Bigler C, Hall RI (2002) Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J Paleolimnol 27:97–115CrossRefGoogle Scholar
  10. Birks HJB (2010) Numerical methods for the analysis of diatom assemblage data. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth science. Cambridge University Press, Cambridge, pp 23–54CrossRefGoogle Scholar
  11. Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~13,300 yr inferred from lake diatoms and sediment-geochemical parameters. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:22–36CrossRefGoogle Scholar
  12. Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G03025. doi: 10.1029/2007JG000540
  13. Bradbury JP, Leyden B, Salgadolabouriau M, Lewis WM, Schubert C, Binford MW, Frey DG, Whitehead DR, Weibezahn FH (1981) Late Quaternary environmental history of Lake Valencia, Venezuela. Science 214:1299–1305CrossRefGoogle Scholar
  14. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  15. Cremer H (1999) Distribution patterns of diatom surface sediment assemblages in the Laptev Sea (Arctic Ocean). Mar Micropaleontol 38:39–67CrossRefGoogle Scholar
  16. Cremer H, Wagner B, Melles M, Hubberten HW (2001) The postglacial environmental development of Raffles So, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87CrossRefGoogle Scholar
  17. Czudek T, Demek J (1970) Thermokarst in Siberia and its influence on the development of lowland relief. Quat Res 1:103–120CrossRefGoogle Scholar
  18. Devlin JE, Finkelstein SA (2011) Local physiographic controls on the responses of Arctic lakes to climate warming in Sirmilik National Park, Nunavut, Canada. J Paleolimnol 45:23–39CrossRefGoogle Scholar
  19. Douglas MSV, Smol JP (1995) Paleolimnological significance of observed distibution patterns of chrysophyte cysts in Arctic pond environments. J Paleolimnol 13:79–83CrossRefGoogle Scholar
  20. Douglas MSV, Smol JP (2010) Freshwater diatoms as indicators of environmental change in the high Arctic. In: Smol JP, Stoermer EF (eds) The diatoms: application for the environmetal and earth sciences. Cambridge University Press, Cambridge, pp 249–266CrossRefGoogle Scholar
  21. Enters D, Kirilova E, Lotter AF, Lucke A, Parplies J, Jahns S, Kuhn G, Zolitschka B (2010) Climate change and human impact at Sacrower See (NE Germany) during the past 13,000 years: a geochemical record. J Paleolimnol 43:719–737CrossRefGoogle Scholar
  22. Frahm JP, Frey W (2004) Moosflora. Eugen Ulmer, StuttgartGoogle Scholar
  23. Frey W, Frahm JP, Fischer E, Lobin W (1995) Die Moos-und Farnpflanzen Europas. Gustav Fischer Verlag, StuttgartGoogle Scholar
  24. Grigoriev NF (1960) The temperature of permafrost in the Lena Delta basin-Deposit conditions and properties of the permafrost in Yakutia. Yakutsk (in Russian)Google Scholar
  25. Grigoriev MN, Imaev VS, Imaeva LP, Kozmin BM, Kunitskiy VV, Lationov AG, Mikulenko KI, Skryabin RM, Timirshin KV (1996) Geology, seismicity and cryogenic processes in the arctic areas of Western Yakutia. Yakut Scientific Centre SD RAS, Yakutsk, p 84Google Scholar
  26. Grimm EC (1987) Coniss—a Fortran-77 program for stratigraphically constrained cluster-analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  27. Hamilton-Taylor J, Smith E, Davison W, Sugiyama M (2005) Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim Cosmochim Acta 69:1947–1960CrossRefGoogle Scholar
  28. Hay MB, Michelutti N, Smol JP (2000) Ecological patterns of diatom assemblages from Mackenzie Delta lakes, Northwest Territories, Canada. Can J Bot 78:19–33Google Scholar
  29. Herzschuh U, Zhang CJ, Mischke S, Herzschuh R, Mohammadi F, Mingram B, Kurschner H, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Glob Planet Change 46:361–379CrossRefGoogle Scholar
  30. Herzschuh U, Bolshiyanov D, Pestryakova L, Boersma M, Abramova K, Zubrzycki S, Biskaborn BK, Klemm J, Vakhrameeva P (2009) Ecological state of permafrost lakes and their catchment along a north–south transect in north-central Yakutia: past and present. Rep Pol Mar Res 600:22–24Google Scholar
  31. Hill MO (1973) Diversity and evenness—unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  32. Hilton J, Lishman JP, Allen PV (1986) The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol Oceanogr 31:125–133CrossRefGoogle Scholar
  33. Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298Google Scholar
  34. Ivorra N, Barranguet C, Jonker M, Kraak M, Admiraal W (2002) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 116:147–157CrossRefGoogle Scholar
  35. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae Band 2/2. Gustav Fischer Verlag, StuttgartGoogle Scholar
  36. Kumke T, Kienel U, Weckström J, Korhola A, Hubberten HW (2004) Inferred Holocene paleotemperatures from diatoms at Lake Lama, Central Siberia. Arct Antarct Alp Res 36:624–634CrossRefGoogle Scholar
  37. Laing TE, Smol JP (2003) Late Holocene environmental changes inferred from diatoms in a lake on the western Taimyr Peninsula, northern Russia. J Paleolimnol 30:231–247CrossRefGoogle Scholar
  38. Laing TE, Pienitz R, Smol JP (1999a) Freshwater diatom assemblages from 23 lakes located near Norilsk, Siberia: a comparison with assemblages from other circumpolar treeline regions. Diatom Res 14:285–305CrossRefGoogle Scholar
  39. Laing TE, Rühland KM, Smol JP (1999b) Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. Holocene 9:547–557CrossRefGoogle Scholar
  40. Lange-Bertalot H, Metzeltin D (1996) Indicators of oligotrophy. Iconographia Diatomologica, vol 2. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  41. Lange-Bertalot H, Hofmann G, Werum M (2011) Diatomeen im Süßwasser-Benthos von Mitteleuropa. Gantner Verlag, RugellGoogle Scholar
  42. Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  43. Meyers PA, Teranes JL (2002) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Physical and geochemical methods, vol 2. Kluwer, Dordrecht, pp 239–269CrossRefGoogle Scholar
  44. Michelutti N, Hay M, Marsh P, Lesack L, Smol J (2001) Diatom changes in Lake Sediments from the Mackenzie Delta, NWT, Canada: paleohydrological applications. Arct Antarct Alp Res 33:1–12CrossRefGoogle Scholar
  45. Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophys Res 112:G03002. doi: 10.1029/2006JG000396
  46. Morgenstern A, Grosse G, Günther F, Fedorova I, Schirrmeister L (2011) Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosph Discuss 5:1495–1545CrossRefGoogle Scholar
  47. Murton JB (1996) Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, western arctic Canada. Sedimentology 43:737–760CrossRefGoogle Scholar
  48. Murton JB (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob Planet Change 28:175–192CrossRefGoogle Scholar
  49. Muster S, Langer M, Heim B, Westermann S, Boike J (2012) Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia. Tellus B 64:17301Google Scholar
  50. Paul CA, Rühland KM, Smol JP (2010) Diatom-inferred climatic and environmental changes over the last 9,000 years from a low Arctic (Nunavut, Canada) tundra lake. Palaeogeogr Palaeoclimatol Palaeoecol 291:205–216CrossRefGoogle Scholar
  51. Pestryakova LA, Subetto DA, Gerasimova MA, Andreev A, Diekmann B, Popp S (2008) Environmental evolution in central Yakutia during the Holocene. Izvestia Rossiis-kogo Geographicheskogo Obshestva 140:54–67Google Scholar
  52. Pestryakova LA, Herzschuh U, Wetterich S, Ulrich M (2012) Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records. Quat Sci Rev 51:56–70CrossRefGoogle Scholar
  53. Pisaric MFJ, MacDonald GM, Cwynar LC, Velichko AA (2001a) Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting late quaternary fossil pollen assemblages. Arct Antarct Alp Res 33:19–27CrossRefGoogle Scholar
  54. Pisaric MFJ, MacDonald GM, Velichko AA, Cwynar LC (2001b) The lateglacial and postglacial vegetation history of the northwestern limits of Beringia, based on pollen, stomate and tree stump evidence. Quat Sci Rev 20:235–245CrossRefGoogle Scholar
  55. Porinchu DF, Cwynar LC (2002) Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, Northeast Siberia. J Paleolimnol 27:59–69CrossRefGoogle Scholar
  56. Ryves D, Juggins S, Fritz S, Battarbee R (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr Palaeoclimatol Palaeoecol 172:99–113CrossRefGoogle Scholar
  57. Schirrmeister L, Grosse G, Schnelle M, Fuchs M, Krbetschek M, Ulrich M, Kunitsky V, Grigoriev M, Andreev A, Kienast F, Meyer H, Babiy O, Klimova I, Bobrov A, Wetterich S, Schwamborn G (2011) Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 299:175–196CrossRefGoogle Scholar
  58. Schwamborn G, Rachold V, Grigoriev M (2002a) Late Quaternary sedimentation history of the Lena Delta. Quat Int 89:119–134CrossRefGoogle Scholar
  59. Schwamborn GJ, Dix JK, Bull JM, Rachold V (2002b) High-resolution seismic and ground penetrating radar-geophysical profiling of a thermokarst lake in the western Lena Delta, northern Siberia. Permafr Perigl Proc 13:259–269CrossRefGoogle Scholar
  60. Shahgedanova M (2002) Climate at present and in the historical past. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 70–102Google Scholar
  61. Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123:199–208CrossRefGoogle Scholar
  62. Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397CrossRefGoogle Scholar
  63. Tepper J, Hyatt J (2011) Holocene trophic state history of a subtropical blackwater lake, South Georgia, USA. J Paleolimnol 45:9–22CrossRefGoogle Scholar
  64. ter Braak CJF, Smilauer P (2002) Canoco reference manual and Canodraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  65. Tishkov A (2002) Boreal Forests. In: Shahgedanova M (ed) The physical geography of northern Eurasia. Oxford University Press, Oxford, pp 217–233Google Scholar
  66. Ulrich M, Grosse G, Chabrillat S, Schirrmeister L (2009) Spectral characterization of periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry and remote sensing. Remote Sens Environ 113:1220–1235CrossRefGoogle Scholar
  67. van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123CrossRefGoogle Scholar
  68. Walker HJ (1998) Arctic deltas. J Coast Res 14:718–738Google Scholar
  69. Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30:3109–3123CrossRefGoogle Scholar
  70. Wetterich S, Kuzmina S, Andreev AA, Kienast F, Meyer H, Schirrmeister L, Kuznetsova T, Sierralta M (2008) Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia. Quat Sci Rev 27:1523–1540CrossRefGoogle Scholar
  71. Wischnewski J, Mackay AW, Appleby PG, Mischke S, Herzschuh U (2011) Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries. J Paleolimnol 46:215–227CrossRefGoogle Scholar
  72. Zamaloa MD, Tell G (2005) The fossil record of freshwater micro-algae Pediastrum Meyen (Chlorophyceae) in southern South America. J Paleolimnol 34:433–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • B. K. Biskaborn
    • 1
    Email author
  • U. Herzschuh
    • 1
  • D. Bolshiyanov
    • 2
  • L. Savelieva
    • 3
  • R. Zibulski
    • 1
  • B. Diekmann
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations