Journal of Paleolimnology

, Volume 48, Issue 2, pp 417–431 | Cite as

Responses of diatoms to the Younger Dryas climatic reversal in a South Carpathian mountain lake (Romania)

  • Krisztina BuczkóEmail author
  • Enikő Magyari
  • Thomas Hübener
  • Mihály Braun
  • Miklós Bálint
  • Mónika Tóth
  • André F. Lotter
Original paper


A high-resolution paleolimnological study from Lake Brazi, a small mountain lake in the Southern Carpathian Mountains, Romania, shows distinct diatom responses to late glacial and early Holocene climate change between ca. 15,750 and 10,000 cal year BP. Loss-on-ignition, titanium, sulphur, phosphorus, biogenic silica content, and diatom assemblage composition were used as proxies for past environmental changes. Total epilimnetic phosphorus (TP) concentrations and lakewater pH were reconstructed quantitatively using diatom-TP and pH transfer functions. The most remarkable changes in the aquatic ecosystem were found at ca. 12,870 and 10,400 cal year BP. Whereas the onset of the Younger Dryas (YD) climatic reversal was conspicuous in our record, the beginning of the Holocene was not well marked. Two diatom assemblage zones characterize the YD in Lake Brazi, suggesting a bipartite division of this climatic oscillation. The diatom responses to the YD cooling were (1) a shift from Staurosira venter to Stauroforma exiguiformis dominance; (2) a decrease in overall diatom diversity; (3) a decrease in lake productivity, inferred from DI-TP, organic matter, and biogenic silica content; and (4) a lowering of the DI-pH. Compositional change of the diatom assemblages suggested a sudden shift towards more acidic lake conditions at 12,870 cal year BP, which is interpreted as a response to prolonged ice cover and thus shorter growing seasons and/or enhanced outwash of humic acids from the catchment. Taking into account the chironomid-based inference of only moderate July mean temperature decrease (<1 °C), together with the pollen-inferred regional opening of the forest cover and expansion of steppe-tundra, our data suggest that ecosystem changes in the Southern Carpathians during the YD were likely determined by strong seasonal changes.


Diatoms Mountain lake Retezat Mountains Seasonality Transfer function Younger Dryas 



This paper is part of the PROLONG project (Providing long environmental records of Late Quaternary climatic oscillations in the Retezat Mountains). This manuscript was greatly improved through the suggestions of two anonymous reviewers. We are grateful for the support of the Hungarian Scientific Fund (OTKA 83999, PD73234 and NF101362). This is Hungarian Academy of Sciences - Hungarian Natural History Museum Paleo Contribution No. 145. Funding for Miklós Bálint comes from the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.


  1. Adler S (2010) paltran: WA, WA-PLS, MW for paleolimnology. R package version 1.3-0.
  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010CrossRefGoogle Scholar
  3. Ammann B, Birks HJB, Brooks SJ, Eicher U, von Grafenstein U, Hofmann W, Lemdahl G, Schwander J, Tobolski K, Wick L (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347CrossRefGoogle Scholar
  4. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  5. Bennett KD (2005) Psimpoll manual. Accessed 12 Feb 2008
  6. Björck S, Walker MJC, Cwynar LC, Johnsen S, Knudsen KL, Lowe JJ, Wohlfarth B, INTIMATE members (1998) An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J Quaternary Sci 13:283–292CrossRefGoogle Scholar
  7. Bradshaw EG, Jones VJ, Birks HJB, Birks HH (2000) Diatom responses to late-glacial and early Holocene environmental changes at Kråkenes, western Norway. J Paleolimnol 23:21–34CrossRefGoogle Scholar
  8. Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW (2008) An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat Geosci 1:520–523CrossRefGoogle Scholar
  9. Braun M, Hubay K, Magyari E, Veres D, Papp I, Bálint M (2012) Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct lateglacial climate changes in the South Carpathian Mountains. Quatern Int. doi: 10.1016/j.quaint.2012.03.025
  10. Broecker WS (2006) Was the Younger Dryas triggered by a flood? Science 312:1146–1148CrossRefGoogle Scholar
  11. Buck CE, Christen JA, James GN (1999) BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology, 7 (
  12. Buczkó K, Magyari EK, Bitušík P, Wacnik A (2009a) Review of dated late quaternary palaeolimnological records in the Carpathian region, east-central Europe. Hydrobiologia 631:3–28CrossRefGoogle Scholar
  13. Buczkó K, Magyari EK, Soróczki-Pintér É, Hubay K, Braun M, Bálint M (2009b) Diatom-based evidence for abrupt climate changes during the Lateglacial in the South Carpathian Mountains. Central European Geology 52:249–268CrossRefGoogle Scholar
  14. Cameron NG, Birks HJB, Jones VJ, Berge F, Catalan J, Flower RJ, Garcia J, Kawecka B, Koinig KA, Marchetto A, Sánchez-Castillo P, Schmidt R, Sisko M, Solovieva N, Stefková E, Toro M (1999) Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. J Paleolimol 22:291–317CrossRefGoogle Scholar
  15. Fallu MA, Allaire N, Pienitz R (2000) Freshwater Diatoms from northern Québec and Labrador (Canada). Species-environment relationships in lakes of boreal forest, forest-tundra and trunda Lange-Bertalot H. & Kociolek, P. eds: Bibliotheca Diatomologica 45. J. CramerGoogle Scholar
  16. Feurdean A, Mosbrugger V, Onac BP, Polyak V, Veres D (2007) Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania. Quat Res 68:364–378CrossRefGoogle Scholar
  17. Gibson CE (1997) The dynamics of phosphorous in freshwater and marine environments. In: Tunney H, Carton OT, Brookes PC, Johnston AE (eds) Phosphorous loss from soil to water. CAB International, Wallingford, pp 119–149Google Scholar
  18. Hausmann S, Pienitz R (2009) Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Québec, Canada): impacts of climate and timber harvesting. Hydrobiologia 635:1–14CrossRefGoogle Scholar
  19. Haworth EY (1976) Two late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytol 77:227–256CrossRefGoogle Scholar
  20. Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516CrossRefGoogle Scholar
  21. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  22. Heiri O, Cremer H, Engels S, Hoek WZ, Peeters W, Lotter AF (2007) Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands. Quatern Sci Rev 26:2420–2437CrossRefGoogle Scholar
  23. Hübener Th, Dreßler M, Schwarz A, Langner K, Adler S (2008) Dynamic adjustment of training sets (‘moving window‘reconstruction) by using transfer functions in paleolimnology: a new approach. J Paleolimnol 40:79–95CrossRefGoogle Scholar
  24. Ilyashuk B, Gobet E, Heiri O, Lotter AF, van Leeuwen JFN, van der Knaap WO, Ilyashuk E, Oberli F, Ammann B (2009) Late Glacial environmental and climatic changes at the Maloja Pass, Central Swiss Alps, as recorded by chironomids and pollen. Quaternary Sci Rev 28:1340–1353CrossRefGoogle Scholar
  25. Isarin RFB, Renssen H (1999) Reconstructing and modelling Late Weichselian climates: the Younger Dryas in Europe as a case study. Earth Sci Rev 48:1–38CrossRefGoogle Scholar
  26. Jancsik P (2001) A Retyezát-hegység (The Retezat Mountains). Pallas-Akadémia Könyvkiadó, Csíkszereda 140 ppGoogle Scholar
  27. Juggins S (2001) The European diatom database. User Guide. Scholar
  28. Kamenik C, Schmidt R (2005) Chrysophyte resting stages a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489CrossRefGoogle Scholar
  29. Kirilova E, Heiri O, Enters D, Cremer H, Lotter AF, Zolitschka B, Hübener T (2009) Climate-induced changes in the trophic status of a Central European lake. Journal of Limnology 68:71–82CrossRefGoogle Scholar
  30. Koinig KA, Schmidt R, Sommaruga-Wögrath S, Tessadri R, Psenner R (1998) Climate change as the primary cause for pH shifts in a high alpine lake. Water Air Soil Poll 104:167–180CrossRefGoogle Scholar
  31. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae 1-4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds.), Süßwasserflora von Mitteleuropa, Band 1-4/4. Gustav Fischer, HeidelbergGoogle Scholar
  32. Lami A, Guilizzoni P, Ryves DB, Jones VJ, Marchetto A, Battarbee RW, Belis CA, Bettinetti R, Manca M, Comoli P, Nocenti A, Langone L (1997) Late Glacial and Holocene record of biological and environmental changes from the crater Lake Albano central Italy: an interdisciplinary European project (PALICLAS). Water Air Soil Poll 99:601–613Google Scholar
  33. Lange-Bertalot H, Metzeltin D (1996) Indicators of oligotrophy–800 taxa representative of three ecologically distinct lake types, Carbonate buffered: Oligodystrophic–Weakly buffered soft water. Lange-Bertalot, H. (ed.), Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 2. Ecology, Diversity, Taxonomy. Koeltz Scientific Books. Königstein, Germany, 2: 390 ppGoogle Scholar
  34. Lotter AF, Birks HJB, Zolitschka B (1995) Late-glacial pollen and diatom changes in response to two different environmental perturbations: a volcanic eruption and the Younger Dryas cooling. J Paleolimnol 14:23–47CrossRefGoogle Scholar
  35. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern Diatom, Cladocera, Chironomid, and Chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463CrossRefGoogle Scholar
  36. Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361CrossRefGoogle Scholar
  37. MacDonald GM, Bennett KD, Jackson ST, Parducci L, Smith FA, Smol JP, Willis KJ (2008) Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. Prog Phys Geog 32:139–172CrossRefGoogle Scholar
  38. Magyari EK, Braun M, Buczkó K, Hubay K, Bálint M (2009) Radiocarbon chronology of glacial lake sediments in the Retezat Mts (S Carpathians, Romania): a window to Lateglacial and Holocene climatic and palaeoenvironmental changes. Central European Geology 52:225–248CrossRefGoogle Scholar
  39. Magyari EK, Jakab G, Bálint M, Kern Z, Buczkó K, Braun M (2012) Rapid vegetation response to lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quaternary Sci Rev. doi: 10.1016/j.quascirev.2012.01.006 Google Scholar
  40. Moreno A, López-Merino L, Leira M, Marco-Barba J, González-Ampériz P, Valero-Gatcés BL, López-Sáez JA, Santos L, Mata P, Ito E (2010) Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J Paleolimnol. doi: 10.1007/s10933-009-9387-7 Google Scholar
  41. Peteet DM (1995) Global younger Dryas? Quatern Int 28:93–104CrossRefGoogle Scholar
  42. Pienitz R, Smol JP, Birks HJB (1995) Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J Paleolimnol 13:21–49CrossRefGoogle Scholar
  43. Psenner R, Schmidt R (1992) Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356:781–783CrossRefGoogle Scholar
  44. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. doi: 10.1029/2005JD006079 CrossRefGoogle Scholar
  45. Rawlence DJ (1988) The post-glacial diatom history of Splan Lake. New Brunswick J Paleolimnol 1:51–60Google Scholar
  46. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney C, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  47. Renssen H, Isarin RFB (2001) The two major warming phases of the last deglaciation at ~14.7 and ~11.5 kyr cal BP in Europe: climate reconstructions and AGCM experiments. Global Planet Change 30:117–154CrossRefGoogle Scholar
  48. Schmidt R, van den Bogaard C, Merkt J, Müller J (2002) A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: the Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quatern Int 88:45–56CrossRefGoogle Scholar
  49. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63:171–189CrossRefGoogle Scholar
  50. Schmidt R, Kamenik C, Tessadri R, Koinig KA (2006) Climatic changes from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by sedimentological and biological proxies of a lake sediment core. J Paleolimnol 35:491–505CrossRefGoogle Scholar
  51. Schmidt R, Roth M, Tessadri R, Weckström K (2008) Disentangling late-Holocene climate and land-use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. J Paleolimnol 40:453–469CrossRefGoogle Scholar
  52. Shakun JD, Carlson AE (2010) A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Sci Rev 29:1801–1816CrossRefGoogle Scholar
  53. Siver PA, Hamilton PB, Stachura-Suchoples K, Kociolek JP (2005) Diatoms of North America: The freshwater flora of Cape Cod, Massachusetts, USA. In: Lange-Bertalot H (ed) Iconographia diatomologica, vol 14. Koeltz Scientific Books, Koeningstein, LiechtensteinGoogle Scholar
  54. ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502CrossRefGoogle Scholar
  55. Tóth M, Heiri O, Brooks SJ, Braun M, Buczkó K, Bálint M, Magyari EK (2012) Lateglacial summer temperatures in the Southern Carpathians (Romania): a chironomid-based reconstruction. Quat Res 77:122–131CrossRefGoogle Scholar
  56. Troels-Smith J (1955) Karakterisering af lose jordater. Danmarks Geologiske Undersogelse IV 10:1–53Google Scholar
  57. Wang L, Lu H, Liu J, Gu Z, Mingram J, Chu G, Li J, Rioual P, Negendank JFW, Han J, Liu T (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6,000 calendar years BP. J Geophys Res 113:D21101. doi: 10.1029/2008JD010145.W CrossRefGoogle Scholar
  58. Wilson SE, Walker IR, Mott RJ, Smol JP (1993) Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Clim Dyn 4:177–187Google Scholar
  59. Wolfe AP (2002) Climate modulates the acidity of Arctic lakes on millennial time scales. Geology 30:215–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Krisztina Buczkó
    • 1
    Email author
  • Enikő Magyari
    • 2
  • Thomas Hübener
    • 3
  • Mihály Braun
    • 4
  • Miklós Bálint
    • 5
    • 6
  • Mónika Tóth
    • 7
  • André F. Lotter
    • 8
  1. 1.Department of BotanyHungarian Natural History MuseumBudapestHungary
  2. 2.HAS-NHMUS Research Group for PaleontologyBudapestHungary
  3. 3.Institute of BiosciencesUniversity of RostockRostockGermany
  4. 4.Department of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary
  5. 5.Biodiversität und Klima Forschungszentrum Frankfurt am MainFrankfurt am MainGermany
  6. 6.Molecular Biology CenterBabes-Bolyai UniversityClujRomania
  7. 7.Hungarian Academy of SciencesCentre for Ecological Research Balaton Limnological InstituteTihany, Klebelsberg Kuno 3Hungary
  8. 8.Deptartment of Physical Geography, PalaeoecologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations