Advertisement

Journal of Paleolimnology

, Volume 48, Issue 2, pp 311–322 | Cite as

Water-level variations in Lake Nhauhache, Mozambique, during the last 2,300 years

  • Karin Holmgren
  • Jan Risberg
  • Johan Freudendahl
  • Mussa Achimo
  • Anneli Ekblom
  • Joao Mugabe
  • Elin Norström
  • Sandra Sitoe
Original paper

Abstract

Stratigraphic variations in diatom composition and phytolith abundance in a sediment core from a small, hydrologically isolated waterbody, Lake Nhauhache, Mozambique, provide evidence of water-level fluctuations over the past ~2,300 years. Ten AMS radiocarbon dates on bulk sediment samples show that the lake came into existence about 2,300 years ago and that it has dried out since then, but only for brief time periods. Changes in the diatom assemblage composition indicate that lake level fluctuated in response to shifting humidity conditions. The changes reflect wetter conditions ca. 300 BC–AD 800, more variable conditions between AD 800 and 1150, a distinct dry phase within the time span AD 1150–1700 and a return thereafter to more humid conditions until present. There is general agreement between the Lake Nhauhache record and other records from the Southern Hemisphere summer rainfall region. This suggests that sediments from small interdunal lakes, which are abundant along the coast of southern Africa, provide reliable, regional paleoenvironmental information about an area from which more such data are needed.

Keywords

Southern Africa Lake-level changes Paleohydrology Paleoclimatology Microfossils 

Notes

Acknowledgments

We thank Elidio Massuanganhe and Helene Gröndahl for assistance during fieldwork in Mozambique, SIDA for providing a Minor Field Study scholarship to Johan Freudendahl. The work was, in part, carried out within the framework of Karin Holmgrens VR-funded project Holocene climate variability in southern Africa.

References

  1. Albay M, Akcaalan R (2003) Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia 506–509:531–540CrossRefGoogle Scholar
  2. Barker P, Gasse F (2003) New evidence for a reduced water balance in East Africa during the last glacial maximum: implication for model-data comparison. Quat Sci Rev 22:823–837CrossRefGoogle Scholar
  3. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  4. Bellemakers MJS, van Dam H (1992) Improvement of breeding success of the moor frog (Rana arvalis) by liming of acid moorland pools and the consequences of liming for water chemistry and diatoms. Environ Pollut 78:165–171CrossRefGoogle Scholar
  5. Chalié F, Gasse F (2002) Late Glacial-Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Palaeogeogr Palaeoclimatol Palaeoecol 187:259–283CrossRefGoogle Scholar
  6. Cleve-Euler A (1953) Die Diatomeen von Schweden und Finnland, T. 3, Monoraphideae, Biraphideae 1. Kungliga Svenska Vetenskapsakademins Handlingar. Almqvist and Wiksell, StockholmGoogle Scholar
  7. Cleve-Euler A (1955) Die Diatomeen von Schweden und Finnland, T. 4, Biraphideae 2 Kungliga Svenska Vetenskapsakademins Handlingar. Almqvist and Wiksell, StockholmGoogle Scholar
  8. Ekblom A (2004) Changing landscapes: An environmental history of Chibuene, Southern Mozambique Studies in global archaeology 5. Department of Archaeology and Ancient History, Uppsala UniversityGoogle Scholar
  9. Ekblom A (2008) Forest-Savanna dynamics in the coastal lowland of southern Mocambique since c. AD 1400. Holocene 18:1247–1257CrossRefGoogle Scholar
  10. Ekblom A, Gillson L (2010) Hierarchy and scale: testing the role of water, grazing and Nitrogen in the savanna landscape of Limpopo National park (Mozambique). Landsc Ecol 25:1529–1546CrossRefGoogle Scholar
  11. Ekblom A, Stabell B (2008) Paleohydrology of Lake Nhaucati (southern Mozambique), 400 AD to present. J Paleolim. doi: 10.1007/s10933-008-9218-2
  12. FAO (1984) Agroclimatological data for Africa, countries south of the equator. FAO, RomeGoogle Scholar
  13. FAO (1988) Soil map of the world, revised legend. Technical paper 20. ISRIC, WageningenGoogle Scholar
  14. Farmer EC, de Menocal PB, Marchitto TM (2005) Holocene and deglacial ocean temperature variability in the Benguela upwelling region: Implications for low-latitude atmospheric circulation. Paleooceanography, 20 doi: 10.1029/2004PA001049
  15. Flower RJ, Dobinson S, Ramdani M, Kraïem MM, Ben Hamza C, Fathi AA, Abdelzaher HMA, Birks HH, Appleby PG, Lees JA, Shilland E, Patrick ST (2001) Recent environmental change in North African wetland lakes: diatom and other stratigraphic evidence from nine sites in the CASSARINA Project. Aquat Ecol 35:369–388CrossRefGoogle Scholar
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. Fränzle O (1984) Bodenkunde-Südafrika (23°10′-26°52′S, 29°50′-35°40′E). Gebrüder BorntraegerGoogle Scholar
  18. Gasse F (1986) East African diatoms. Taxonomy, ecological distribution. Bibliotheca Diatomologica 11. J Cramer, BerlinGoogle Scholar
  19. Gasse F, Tekaia F (1983) Transfer functions for estimating paleoecological conditions (pH) from East African diatoms. Hydrobiologia 103:85–90CrossRefGoogle Scholar
  20. Gillson L, Ekblom A (2009) Untangling anthropogenic and climatic influence on riverine forest in the Kruger National Park, South Africa. Veg Hist Archaeobot 18:171–185CrossRefGoogle Scholar
  21. Grimm EC (1987) CONISS: a FORTRAN 77 program, for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–54CrossRefGoogle Scholar
  22. Grimm EC (1993) TILIA 2.0 version b.4 (computer software), Illinois State Museum. Research and Collections Center, Springfield, ILGoogle Scholar
  23. Grimm EC (2004) TGView Version 2.0.2 (computer software), Illinois State Museum. Research and Collections Center, Springfield, ILGoogle Scholar
  24. Holmes PJ, Bateman MD, Thomas DSG, Telfer MW, Barker CH, Lawson MP (2008) A Holocene-late Pleistocene aeolian record from lunette dunes of the western Free State Panfield, South Africa. Holocene 18:1193–1205CrossRefGoogle Scholar
  25. Holmgren K, Öberg H (2006) Climate change in southern and eastern Africa during the past millennium and its implications for societal development. Env Dev Sust 8:185–195CrossRefGoogle Scholar
  26. Holmgren K, Moberg A, Svanered O, Tyson PD (2001) A preliminary 3000-year regional temperature reconstruction for South Africa. S Afr J Sci 97:49–51Google Scholar
  27. Jones VJ, Birks HJB (2004) Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. J Paleolim 31:445–466CrossRefGoogle Scholar
  28. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM et al (2009) High-resolution paleoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  29. Krammer K, Lange-Bertalot H (1986) Süßwasserflora von Mitteleuropa. Bacillariophyceae.1. Teil: Naviculaceae.Gustav Fischer Verlag, StuttgartGoogle Scholar
  30. Krammer K, Lange-Bertalot H (1988) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, StuttgartGoogle Scholar
  31. Krammer K, Lange-Bertalot H (1991a) Süßwasserflora von Mitteleuropa. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, StuttgartGoogle Scholar
  32. Krammer K, Lange-Bertalot H (1991b) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fischer Verlag, StuttgartGoogle Scholar
  33. Lee-Thorp JA, Holmgren K, Lauritzen SE, Linge H, Moberg A, Partridge TC, Stevenson C, Tyson P (2001) Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophys Res Lett 28:4507–4510CrossRefGoogle Scholar
  34. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092Google Scholar
  35. Meadows M (1998) Biogeography. In: Adams WM, Goudie AS, Orme AR (eds) The physical geography of Africa. Oxford University Press, Oxford, pp 161–172Google Scholar
  36. Mercader J, Astudillo F, Barkworth M, Bennett T, Esselmont C, Kinyanjui R, Grossman D-L, Simpson S, Walde D (2010) Poaceae phytoliths from the Niassa Rift, Mozambique. J Archaeol Sci 37:1953–1967CrossRefGoogle Scholar
  37. Mercader J, Bennett T, Esselmont C, Simpson S, Walde D (2011) Soil phytoliths from miombo woodlands in Mozambique. Quat Res 75:138–150CrossRefGoogle Scholar
  38. Nadeau MJ, Grootes PM, Voelker A, Bruhn F, Duhr A, Oriwall A (2001) Carbonate 14C background: does it have multiple personalities? Radiocarbon 43:169–176Google Scholar
  39. Neumann FH, Stager JC, Scott L, Venter HJT, Weyhenmeyer C (2008) Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Rev Palaeobot Palynol 152:113–128CrossRefGoogle Scholar
  40. Neumann FH, Scott L, Bousman CB, vanAs L (2010) A holocene sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 162:39–53CrossRefGoogle Scholar
  41. Norström E, Holmgren K, Mörth M (2005) Variations in δ 13C-composition and wood anatomy in Breonadia salicina trees from South Africa between 1375–1995 AD. S Afr J Sci 101:162–168Google Scholar
  42. Norström E, Holmgren K, Mörth C-M (2008) A 600 year long δ18O-record from cellulose of Breonadia salicina trees, South Africa. Dendrochronologia 26:21–33CrossRefGoogle Scholar
  43. Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño–Southern Oscillation variability. Geology 35:21–24CrossRefGoogle Scholar
  44. Schreck M, Abarca N, Schröder H (2007) Holocene sediments in the Cancosa Basin (Northern Chile): first results of diatom analyses. In Kusber, WH, Jahn R (eds) Proceedings of the 1st Central European Diatom Meeting, pp 145–149Google Scholar
  45. Shanahan TM, Overpeck JT, Wheeler CW, Beck JW, Pigati JS, Talbot MR, Scholz CA, Peck J, King JW (2006) Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeogr Palaeoclimatol Palaeoecol 242:287–302CrossRefGoogle Scholar
  46. Shindell DT, Shmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of climate change during the Maunder minimum. Science 294:2149–2152CrossRefGoogle Scholar
  47. Smith J, Lee-Thorp J, Hall S (2007) Climate change and agropastoralist settlement in the Shashe-Limpopo river basin, southern Africa: AD 880 to 1700. S Afr Archaeol Bull 62:115–125Google Scholar
  48. Stevens LR, Stone JR, Campbell J, Fritz SC (2006) A 2200-yr record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data. Quat Res 65:264–274CrossRefGoogle Scholar
  49. Tynni R (1979) Über Finnlands rezente und subfossile Diatomeen, VIII. Geological survey of Finland Bulletin 274: 55Google Scholar
  50. Tyson PD, Preston-Whyte RA (2000) The weather and climate of Southern Africa. Oxford University Press, OxfordGoogle Scholar
  51. Vogel JC, Fuls A, Visser E (2001) Radiocarbon adjustment to the dendrochrolology of a yellowwood tree. S Afr J Sci 97:164–166Google Scholar
  52. Wild H, Fernandes A (1968) Vegetation map of the flora Zambesiaca area, supplement. Flora Zambesiaca. The Government Printer, SalisburyGoogle Scholar
  53. Zalat A, Vildary SS (2007) Environmental change in Northern Egyptian Delta lakes during the late Holocene, based on diatom analysis. J Paleolim 37:273–299CrossRefGoogle Scholar
  54. Zinke J, Dullo WC, Heiss GA, Eisenhauer A (2004) ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth and Planetary Sci Lett 228:177–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Karin Holmgren
    • 1
    • 2
  • Jan Risberg
    • 1
    • 2
  • Johan Freudendahl
    • 1
    • 2
  • Mussa Achimo
    • 3
  • Anneli Ekblom
    • 4
  • Joao Mugabe
    • 3
  • Elin Norström
    • 1
    • 2
  • Sandra Sitoe
    • 3
  1. 1.Bert Bolin Centre of Climate ResearchStockholm UniversityStockholmSweden
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Department of GeologyUniversity of Eduardo MondlaneMaputoMozambique
  4. 4.Department of Archaeology and Ancient History, African and Comparative ArchaeologyUppsala UniversityUppsalaSweden

Personalised recommendations