Journal of Paleolimnology

, Volume 47, Issue 4, pp 549–560 | Cite as

Late Holocene diatom assemblages in a lake-sediment core from Central Kamchatka, Russia

  • Ulrike HoffEmail author
  • Oleg Dirksen
  • Veronika Dirksen
  • Ulrike Herzschuh
  • Hans-Wolfgang Hubberten
  • Hanno Meyer
  • Christel van den Bogaard
  • Bernhard Diekmann
Original paper


Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.


Diatoms Climate change Lake sediments Holocene Kamchatka 



This research was part of the KALMAR project (Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time), which was funded through Grant 03G0640 by the German Federal Ministry of Education and Research (BMBF). We thank Frank Günther from AWI-Potsdam for assisting with ArcGIS and preparation of the map in Fig. 1. Particular thanks go to the laboratory staff of the AWI-Potsdam, Ute Bastian, Antje Eulenburg, and Lutz Schönicke. Furthermore, we are grateful to Anja Marienfeld, Katja Hockun, and Dennis Bunke for their help with sample preparation. We also thank Dr. Helga Kemnitz, Ilona Schäpan, and Juliane Herwig from the German Research Centre for Geosciences (GFZ) for assistance during the use of the scanning electron microscope facility. Finally, we appreciate the helpful comments and suggestions of Dr. Mark Brenner as well as two anonymous reviewers.


  1. Battarbee RW (1973) A new method for the estimation of absolute microfossil numbers, with reference especially to diatom. Limnol Oceanogr 18:647–653CrossRefGoogle Scholar
  2. Berger WH, Vincent E (1986) Deep-sea carbonates: reading the carbon-isotope signal. Geol Rundsch 75:249–269CrossRefGoogle Scholar
  3. Bezrukova EV, TarasovPE SolovievaN, Krivonogov SK, Riedel F (2010) Last glacial-interglacial vegetation and environment dynamics in southern Siberia: chronology, forcing and feedbacks. Palaeogeogr Palaeoclimatol Palaeoecol 296:185–198CrossRefGoogle Scholar
  4. Bigler C, Hall RI (2002) Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for palaeoecological reconstructions. J Paleolimnol 27:97–115CrossRefGoogle Scholar
  5. Bradbury JP, Cumming BF, Laird K (2002) A 1500-year record of climatic and environmental change in Elk Lake, Minnesota III: measures of past primary productivity. J Paleolimnol 27:321–340CrossRefGoogle Scholar
  6. Braitseva OA, Melekeszev IV, Evteeva IS, Lupikina EG (1968) Stratigrafiya chetvertichnykh otlozhenii i oledeneniya Kamchatki. Nauka, Moscow [Quaternary stratigraphic deposits and glaciations of Kamchatka]Google Scholar
  7. Chipman ML, Clarke GH, Clegg BF, Gregory-Eaves I, Hu FS (2009) A 2000 year record of climatic change at Ongoke Lake, southwest Alaska. J Paleolimnol 41:57–75CrossRefGoogle Scholar
  8. Cremer H, Wagner B (2004) Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can J Bot 82:1744–1757CrossRefGoogle Scholar
  9. Cremer H, Wagner B, Melles M, Hubberten HW (2001) The postglacial environmental development of Raffles Sø, East Greenland: inference from a 10,000 year diatom record. J Paleolimnol 26:67–87CrossRefGoogle Scholar
  10. Danzeglocke U, Jöris O, Weninger B (2010) CalPal-2007online. Accessed 2010-04
  11. Dirksen V, Dirksen O (2008) Late Pleistocene to Holocene climate changes on Kamchatka, Russian Far East, inferred from pollen records. Geophys Res Abstr 10: EGU2008-A-10287Google Scholar
  12. Dirksen VG, Uspenskaia ON (2005) Holocene climate and vegetation changes in Eastern Kamchatka based on pollen, macrofossil and tephra records. Geophys Res Abstr 7: EGU05-A-01435Google Scholar
  13. Dirksen O, van den Bogaard C, Danhara T, Diekmann B (2011) Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: numerous landslides and lake tsunami, and their environmental impacts. Quat Int 246:298–311CrossRefGoogle Scholar
  14. Ekdahl EJ, Fritz SC, Baker PA, Rigsby CA, Coley K (2008) Holocene multidecadal- to millennial-scale hydrologic variability on the South American Altiplano. Holocene 18:867–876CrossRefGoogle Scholar
  15. Fenner J (1985) Late Cretaceous to Oligocene planktic diatoms. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, pp 713–763Google Scholar
  16. Finkelstein SA, Gajewski K (2007) A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. Holocene 17:803–881CrossRefGoogle Scholar
  17. Gibson CE, Anderson NJ, Haworth EY (2003) Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. Eur J Phycol 38:83–101CrossRefGoogle Scholar
  18. Grachev MA, Vorobyova SS, Likhoshway YV, Goldberg EL, Ziborova GA, Levina OV, Khlystov OM (1998) A high-resolution diatom record of the palaeoclimates of East Siberia for the last 2.5 My from Lake Baikal. Quat Sci Rev 17:1101–1106CrossRefGoogle Scholar
  19. Grimm EC (1991) Tilia 1.12, Tilia-Graph 1.18. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  20. Hoff U (2010) Freshwater diatoms as indicators for Holocene environmental- and climate changes on Kamchatka, Russia. PhD-Thesis at University of Potsdam, PotsdamGoogle Scholar
  21. Huber K, Weckström K, Drescher-Schneider R, Knoll J, Schmidt J, Schmidt R (2010) Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). J Paleolimnol 43:131–147CrossRefGoogle Scholar
  22. Hustedt F (1930–1966) Die Kieselalgen Deutschlands, Österreichs und der Schweiz I, II, und III. In: Rabenhorst’s L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Koeltz Scientific Books, ChampaignGoogle Scholar
  23. Kienel U, Kumke T (2002) Combining ordination techniques and geostatistics to determine the patterns of diatom distributions at Lake Lama, Central Siberia. J Paleolimnol 28:181–194CrossRefGoogle Scholar
  24. Kobayasi H, Idei M, Nagumo T, Mayama S, Osada K (2006) H. Kobayasi’s Atlas of Japanese Diatoms based on electron microscopy. Uchida Rokakuho Publishing Co, TokyoGoogle Scholar
  25. Korhola A (2007) Diatom methods/data interpretation. In: Elias LA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 494–507CrossRefGoogle Scholar
  26. Korhola A, Sorvari S, Rautio M, Appleby PG, Dearing JA, Hu Y, Rose N, Lami A, Cameron NG (2002) A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland. J Paleolimnol 28:59–77CrossRefGoogle Scholar
  27. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heyning H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. G. Fischer, StuttgartGoogle Scholar
  28. Krestov P (2003) Forest vegetation of easternmost Russia (Russian Far East). In: Kolbek J, Srutek M, Box EO (eds) Forest vegetation of Northeast Asia. Kluwer, Dordrecht, pp 93–179Google Scholar
  29. Kumke T, Kienel U, Weckström J, Korhola A, Hubberten HW (2004) Inferred Holocene Paleotemperatures from Diatoms at Lake Lama, Central Siberia. Arct Antarct Alp Res 36:624–634CrossRefGoogle Scholar
  30. Laing TE, Rühland KM, Smol JP (1999) Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. Holocene 9:547–557CrossRefGoogle Scholar
  31. Lepskaya EV, Jewson DH, Usoltseva MV (2010) Aulacoseira subarctica in Kurilskoye Lake, Kamchatka: a deep, oligotrophic lake and important Pacific salmon nursery. Diatom Res 25:323–335CrossRefGoogle Scholar
  32. Lotter AFC, Biegler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  33. Medvedeva LA, Nikulina TV, Genkal SI (2009) Centric diatoms (Coscinodiscophyceae) of fresh and brackish water bodies of the southern part of the Russian Far East. Oceanol Hydrobiol Studies 38:139–164CrossRefGoogle Scholar
  34. Metcalfe SE (1988) Diatoms in a core from Laguna Zacupa, Michaocán, Mexico. In: Proceedings of 9th international diatom symposium, pp 251–263Google Scholar
  35. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 239–269Google Scholar
  36. Millet L, Giguet-Covex C, Verneaux V, Druart JC, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978CrossRefGoogle Scholar
  37. Moos TM, Laird KR, Cumming BF (2009) Climate-related eutrophication of a small boreal lake in northwestern Ontario: a palaeolimnological perspective. Holocene 19:359–367CrossRefGoogle Scholar
  38. Ponomareva VV, Kyle PR, Pevzner MM, Sulerzhitsky LD, Hartman M (2007) Holocene eruptive history of Shiveluch volcano. Kamchatka Peninsula. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees J (eds) Volcanism and subduction: the Kamchatka Region. American Geophysical Union Geophysical Monograph Series, vol 172, pp 263–282Google Scholar
  39. Rioual P, Andrieu-Ponel V, de Beaulieu J-L, Reille M, Svobodova H, Battarbee RW (2007) Diatom responses to limnological and climatic changes at Ribains Maar (French Massif Central) during the Eemian and Early Würm. Quat Sci Rev 26:1557–1609CrossRefGoogle Scholar
  40. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554CrossRefGoogle Scholar
  41. Rühland K, Smol JP (2005) Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 226:1–16CrossRefGoogle Scholar
  42. Rühland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 Lakes across Canadian Arctic Treeline. Arct Antarct Alp Res 35:110–123CrossRefGoogle Scholar
  43. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Global Change Biol 14:1–15Google Scholar
  44. Sapozhnikova SV, Usoltseva MV, Vorobyova SS, Likhoshway YV, Popovskaya GI (2000) Aulacoseira subarctica (O. Mull) Haworth from extant plankton and from Pleistocene sediments of Lake Baikal. In: Grachev MA (ed) The third Vereshchagin Baikal conference. Limnological Institute of the Siberian Branch of the Russian Academy of Science, IrkutskGoogle Scholar
  45. Savoskul OS (1999) Holocene glacier advances in the headwaters of Sredniaya Avacha, Kamchatka, Russia. Quat Res 52:14–26CrossRefGoogle Scholar
  46. Schrader H-J (1973) Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments. In: Simonsen R (ed) Second symposium on recent and fossil diatoms. Nova Hedwigia, vol 45, pp 403–409Google Scholar
  47. Sieper HP, Kupka HJ, Williams T, Rossmann A, Rummel S, Tanz N, Schmidt HL (2006) A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulphur in food commodities and other biological material. Rapid Commun Mass Spectrom 20:2521–2527CrossRefGoogle Scholar
  48. Smol JP, Wolfe AP, Birks HJ, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antonaides D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102:4397–4402CrossRefGoogle Scholar
  49. Solomina O, Wiles G, Shiraiwa T, D’Arrigo R (2007) Multiproxy records of climate variability for Kamchatka for the past 400 years. Clim Past 3:119–128CrossRefGoogle Scholar
  50. Solovieva N, Jones VJ (2002) A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. J Quat Sci 17:303–318CrossRefGoogle Scholar
  51. Solovieva N, Jones V, Birks JHB, Appleby P, Nazarova L (2008) Diatom responses to 20th century climate warming in lakes from the northern Urals, Russia. Palaeogeogr Palaeoclimatol Palaeoecol 259:96–106CrossRefGoogle Scholar
  52. Tolonen K (1987) Natural history of raised bogs and forest vegetation in the Lammi area, southern Finnland studied by stratigraphical methods. Annales Academiæ Scientiarum Fennicæ Series A, III Geologica-Geographica, Suomalainen Tiedeakatemia, HelsinkiGoogle Scholar
  53. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  54. Zech W, Bäumler R, Savoskul O, Braitseva OA, Melekestsev J (1997) Evidence of middle Pleistocene glaciation in SW-Kamchatka. Z Gletscherk Glazialgeol 33:15–20Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ulrike Hoff
    • 1
    • 4
    Email author
  • Oleg Dirksen
    • 2
  • Veronika Dirksen
    • 2
  • Ulrike Herzschuh
    • 1
  • Hans-Wolfgang Hubberten
    • 1
  • Hanno Meyer
    • 1
  • Christel van den Bogaard
    • 3
  • Bernhard Diekmann
    • 1
  1. 1.Research Department PotsdamAlfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.Institute of Volcanology and SeismologyPetropavlovsk-KamchatskyRussia
  3. 3.Leibniz Institute of Marine Sciences IFM-GEOMARKielGermany
  4. 4.Department of GeologyUniversity of TromsøTromsøNorway

Personalised recommendations