Journal of Paleolimnology

, Volume 47, Issue 2, pp 233–249 | Cite as

Physical and biological properties of the late Miocene, long-lived Turiec Basin, Western Carpathians (Slovakia) and its paleobiotopes

  • Radovan PipíkEmail author
  • Anne-Marie Bodergat
  • Danielle Briot
  • Michal Kováč
  • Ján Král’
  • Grzegorz Zielinski


The Turiec Basin (TB) of Slovakia formed in the Miocene when the West Carpathians escaped from the Alpine region. The 1,250-m-thick sedimentary Neogene fill of the basin preserved fossil leaves as well as endemic bivalves, gastropods, and ostracodes. The paleolimnologic changes recorded in the TB infill were derived from the most abundant fossils, the ostracodes. Five contemporaneous ostracode assemblages within the Late Miocene lacustrine system were distinguished through statistical analysis. These assemblages have low species similarity, between 2.1 and 24.1%, and are recognized by shape differences among the Candoninae. The ostracode assemblages, mollusca fossils, and Sr-isotope ratios suggest a low-salinity environment at the beginning of the Late Miocene, during a brief connection with the Central Paratethys. When the connection ceased, the basin became an isolated freshwater lake, with five zones differentiated ecologically and bathymetrically using the ostracode assemblages. Taxonomic comparison of the faunas of the TB and the freshwater to brackish Neogene basins of Europe demonstrates the endemic character of the TB ostracode fauna. The biologic characteristics of the ostracode families, along with the geology of the lake basin, suggest that the longevity of the Late Miocene lake probably exceeded 1 Ma.


Late Miocene Long-lived lake Intralacustrine evolution Endemism Lacustrine Ostracoda Strontium isotopes 



The research was conducted within the framework of a scientific co-operation between France and Slovakia. It was supported by the Ministry of the French Foreign Office, UMR PEPS of CNRS, Université Claude Bernard, Lyon I, VEGA agency (project No. 2/0060/09), the APVV agency (Project No. LPP–0120–06), and ESF–EC–0006–07. Thanks are also extended to Dan L. Danielopol, I. Boomer, H. Janz, K. Holcová, M. Kováčová, M. Stolár, K. Martens, G. Vandrová, V. Sitár, M. Rakús and two anonymous reviewers for providing literature, knowledge, and fossils from the Turiec Basin as well as helpful remarks and advice. This work was supported by the Operational Programme Research and Development through the project: Centre of Excellence for Integrated Research of the Earth’s Geosphere (ITMS: 26220120064), which is co-financed through the European Regional Development Fund.

Supplementary material

10933_2011_9573_MOESM1_ESM.tif (2.8 mb)
Geographic location of the exposures and cores in the Turiec Basin. Geographic coordinates are given in Pipík (2001) (TIFF 2905 kb)
10933_2011_9573_MOESM2_ESM.doc (60 kb)
List of the 85 Ostracoda species found in the Turiec Basin deposits. Underlined taxa were not used for statistical purposes (DOC 60 kb)
10933_2011_9573_MOESM3_ESM.xls (20 kb)
Morphological characters of the Turiec Basin Candoninae tested by PCA and their quantification (XLS 20 kb)
10933_2011_9573_MOESM4_ESM.xls (75 kb)
Plot F1–F2 of the Correspondence Analysis. Plot of the samples. A—all samples; B—detail of the distribution of the samples on the right side of ESM4A (XLS 75 kb)
10933_2011_9573_MOESM5_ESM.xls (114 kb)
Plot F1–F2 of the Correspondence Analysis. Plot of the species. 1. Candona margueritae, 2. C. neglecta, 3. C. singularis, 4. C. slamkovae, 5. C. imaginaria, 6. C. incurva, 7. C. densa, 8. C. vahica, 9. C. sp. 38, 10. C. sp. 40, 11. C. sp. 42, 12. C. sp. 46, 13. C. sp. 47, 14. Cypridopsis sp., 15. Cypria lenticulata, 16. Euxinocyhtere lactea, 17. E. quadricostata, 18. Fabaeformiscandona sturi, 19. F. ex gr. breuili, 20. Herpetocypris denticulata, 21. H. pusilla, 22. Pseudocandona eremita, 23. P. protoalbicans, 24. P. vannieri, 25. Psychrodromus janzi, 26. P. cf. janzi, 27. Candona aculeata, 28. Candona armata, 29. C. expressa, 30. C. lacustris, 31. C. montana, 32. C. ossea, 33. C. palustris, 34. C. sitari, 35. Cypria bodergatiae, 36. C. isosceles, 37. C. servica, 38. Euxinocythere minuscula, 39. Fabaeformiscandona sp. 1, 40. Pseudocandona centropunctata, 41. P. pharia, 42. Candona sp. 67 juv., 43. C. sp. 68 juv., 44. Pseudocandona carbonneli, 45. Fabaeformiscandona aff. lineata, 46. Candona nubila, 47. C. pacifica, 48. C. simplaria, 49. C. stagnosa, 50. C. subaculeata, 51. C. eminens, 52. C. prisca, 53. C. vacuospinosa, 54. Psychrodromus sp. 3, 55. Euxinocythere satyrica, 56. E. sp. 8, 57. Candona laterisimilis, 58. Euxinocythere sp. 9, 59. Cavernocypris subterranea, 60. Ilyocypris papilionacea, 61. I. sp. 1, 62. Mediocypris sp., 63. Euxinocythere delicata, 64. Pseudocandona compressa, 65. Vestalenula pagliolii, 66. Candona jiriceki, 67. C. robusta, 68. C. sirveni, 69. C. clivosa, 70. C. mocki, 71. C. tatrica, 72. Heterocypris salina, 73. Fabaeformiscandona sp. 2, 74. F. balatonica, 75. F. regia, 76. ?Eucypris sp., 77. Candona fatrica, 78. Candonopsis arida, 79. Darwinula stevensoni, 80. Cypria polyphema, 81. Euxinocythere aphroditae (XLS 113 kb)
10933_2011_9573_MOESM6_ESM.tif (3.7 mb)
Distribution of Candoninae as a function of factors PC1 and PC2, their attribution to assemblages and factor eigenvalues (a surface of the coloured area corresponds to the importance of the species for an assemblage). 1. Fabaeformiscandona balatonica, 2. Pseudocandona aff. eremita, 3. Fabaeformiscandona regia, 4. Candonopsis arida, 5. Candona mocki, 6. C. densa, C. clivosa, 7. C. fatrica, 8. Pseudocandona compressa, 9. Candona tatrica, 10. Pseudocandona protoalbicans, 11. Fabaeformiscandona sturi, 12. Pseudocandona vannieri, 13. Candona vahica, 14. Fabaeformiscandona sp. 1, 15. F. aff. lineata, 16. Candona imaginaria, 17. C. incurva, 18. C. slamkovae, 19. Pseudocandona carbonneli, 20. Candona palustris with slightly rounded dorsal, 21. C. laterisimilis, 22. C. palustris with right dorsal and C. lacustris, 23. C. expressa, 24. C. montana, 25. C. robusta, 26. C. pacifica, 27. C. vacuospinosa, 28. C. prisca, 29. C. eminens, 30. C. armata with weak ornamentation, 31. C. sitari and C. ossea, 32. C. armata with heavy ornamentation and tubercules, 33. C. nubila, 34. C. aculeata, 35. C. simplaria, 36. C. subaculeata, 37. C. jiriceki, 38. C. stagnosa, 39. C. sp. 47, 40. Pseudocandona ex gr. centropunctata, 41. P. pharia (TIFF 3777 kb)
10933_2011_9573_MOESM7_ESM.tif (2.8 mb)
Fine structural details (SEM photos) of the mollusc carapaces from the Turiec Basin reveal the quality of preservation (A) Planorbis sp., Lehôtka, (B) Melanopsis sp., Martin, (C) Congeria sp., Slovenské Pravno field road, (D) Candona clivosa, Lehôtka. Transparent ostracod valves were cleaned in an ultrasonic bath and the area around the inner lamella was removed because small clayey and quartz grains sometimes remained trapped between the inner and outer lamella (TIFF 2894 kb)
10933_2011_9573_MOESM8_ESM.xls (22 kb)
87Sr/86Sr ratios of ostracod and mollusc valves. B—Bivalvia, G—Gastropoda, O—Ostracoda. Location of the samples is given in Pipík (2001) (XLS 22 kb)
10933_2011_9573_MOESM9_ESM.xls (22 kb)
Species of the Turiec Basin known in the other freshwater and brackish Miocene and Pliocene deposits of Europe. 1—Janz (1997), 2—Carbonnel (1969); Carbonnel et al. (1985); Malz and Moayedpour (1973); Straub 1952; Witt (2000) (Swiss Molasse Basin, Rhone Basin, Sub-Alpine Molasse Basin in Bavary, freshwater basins in the west of the Czech Republic), 3—Pipík et al. 2004, 4—Krstić (1972, 1995a, b); Pipík and Bodergat (2003b), 5—Freels (1980); Mostafawi (1994, 1996), 6—Mandelstam and Schneider (1963) (XLS 22 kb)
10933_2011_9573_MOESM10_ESM.xls (27 kb)
Ecological characteristics of the species (Meisch 2000; Martens et al. 1997; Fuhrmann 1991; Janz 1997; Marmonier et al. 1989). AM—abandoned meanders, c—cold, C—cave, CI—coastal and inland waters, cl—clay, FW—freshwater, IZ–interstitial zone, L–limnic, LB—limno-brackish, LF—limno-fluviatil, m—mud, MH—mesohalophilic, ML—mountain lakes, MR—mesorheophilic, MT—mesothermophilic, OR—oligorheophilic, OR—oligorheophilic, OT—oligothermophilic, P—permanent, PL—pool, PO—pond, PR—polyrheophilic, RP—riverine pools, s—sand, S—spring, SM—stream, Ss—slow stream, SSS—salty sulphurous springs, T—temporary, TE—thermoeuryplastic, v—vegetation, w—warm (XLS 27 kb)


  1. Bronshtein ZS (1947) Fauna SSSR, Rakoobraznye, Tom II, Vyp. 1 Ostracoda Presnykh Vod. Academy of Sciences of the USSR Publishers, Moscow. (English translation 1988: Freshwater Ostracoda—Fauna of the USSR: Crustaceans, vol. II, No.1. AA Balkema, Rotterdam)Google Scholar
  2. Broodbaker NW (1983) The subfamily Candoninae (Crustacea, Ostracoda) in the West Indies. Bijdr Dierk 53:287–326Google Scholar
  3. Buday T (1962) Neogén Turčianské kotliny [Neogeneof the TuriecDepression]. Sbornik Ústředního Ústavu geologického 28:475–498 (in Czech with English abstract)Google Scholar
  4. Carbonnel G (1969) Les Ostracodes du Miocène rhodanien; Systématique, biostratigraphie, écologie, paléobiologie. Docum Lab Géol Fac Sci Lyon 32:1–469Google Scholar
  5. Carbonnel G, Weidmann M, Berger JP (1985) Les ostracodes lacustres et saumâtres de la molasse de Suisse occidentale. Rev Paléobiol 4(2):215–251Google Scholar
  6. Danielopol DL (1980) On the carapace shape of some European freshwater interstitial Candoninae (Ostracoda). Proc Biol Soc Washington 93:743–756Google Scholar
  7. Freels D (1980) Limnische Ostrakoden aus Jungtertiär und Quartär der Türkei. Geol Jb B 39:3–169Google Scholar
  8. Fuhrmann R (1991) Ostrakoden aus den Holstein-Intergalzialbecken Wildschütz und Dahlen (Sachsen). Z Geol Wiss 19:269–288Google Scholar
  9. Gašparík J, Brestenská E, Forgáč J, Franko O, Hajošová M, Hanáček J, Marková M, Matkulčík E, Planderová E, Sitár V (1974) Štruktúrny vrt GHŠ-1 (Horná Štubňa) [Structural core GHŠ-1 (Horná Štubňa)]. Region Geol Západ Karpát 3:1–97 (in Slovak)Google Scholar
  10. Gašparík J, Halouzka R, Miko O, Gorek J, Rakús M, Bujnovský A, Lexa J, Panáček A, Samuel O, Gašparíková V, Planderová E, Snopková P, Fendek M, Hanáček J, Modlitba I, Klukanová A, Žáková E, Horniš J, Ondrejičková A (1995) Vysvetlivky ku geologickej mape Turčianskej kotliny 1:50000 [Explanations to geological map 1:50000 of the Turiec Depression]. Geologický ústav Dionýza Štúra, Bratislava (in Slovak)Google Scholar
  11. Gierlowski-Kordesch EH, Jacobson AD, Blum JD, Valero Garces BL (2008) Watershed reconstruction of a Paleocene-Eocene lake basin using Sr isotopes in carbonate rocks. Geol Soc Am Bull 120:85–95CrossRefGoogle Scholar
  12. Gorthner A (1994) What is an ancient lake? In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes. Arch Hydrobiol Beih Ergebn Limnol 44:97–100Google Scholar
  13. Hók J, Kováč M, Rakús M, Kováč P, Nagy A, Kováčová-Slamková M, Sitár V, Šujan M (1998) Geologic and tectonic evolution of the Turiec depression in the Neogene. Slovak Geol Mag 4:165–176Google Scholar
  14. Janz H (1997) Die Ostrakoden der kleini-Schichten des miozänen Kratersees von Steinheim am Albuch (Süddeutschland). Stuttgarter Beitr Naturk B (Geologie und Paläontologie) 251:1–101Google Scholar
  15. Janz H, Vennemann TW (2005) Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 225:216–247CrossRefGoogle Scholar
  16. Jiříček R (1985) Die Ostracoden des Pannonien. In: Papp A (ed) Chronostratigraphie und Neostratotypen, Miozän der Zentral Paratethys, Bd. VII, M6 Pannonien (Slavonien und Serbien). Akadémiai Kiado Budapest, pp 378Google Scholar
  17. Kheil J (1968) Význam rodu Mediocypris (Ostracoda) pro stratigrafii miocénu Evropy a Asie [Significance of the genus Mediocypris for Miocene stratigraphy of the Europe and Asia]. Věstník Ústředního ústavu geologického 43:23–36 (in Czech)Google Scholar
  18. Konečný V, Lexa J, Planderová E (1983) Stratigrafické členenie neovulkanitov stredného Slovenska [Stratigraphy of the Central Slovakia Volcanic Field]. Západ Karpaty, Geol 9:1–203 (in Slovak with English abstract)Google Scholar
  19. Kováč M (2000) Geodynamický, paleogeografický a štruktúrny vývoj karpatsko-panónskeho regiónu v miocéne: Nový pohľad na neogénne panvy Slovenska [Miocene geodynamic, paleogeographic and tectonic evolution of the Carpatho-Pannonian region: new inside to Neogene basins of Slovakia]. VEDA, Bratislava (in Slovak)Google Scholar
  20. Kováč P, Hók J (1993) The central Slovakia fault system—field evidence of a strike slipe. Geol Carpath 44:155–159Google Scholar
  21. Král’ J, Zielinski G, Fordinál K (1995) 87 Sr/86Sr in three mollusc shells from the tertiary rocks of the Western Carpathians. Mineralia Slov 27:365–374 (in Slovak with English abstract)Google Scholar
  22. Krstić N (1972) Rod Candona (Ostracoda) iz kongerijskikh slojeva juzhnog dela Panonskog basena [Genus Candona (Ostracoda) from Congeria beds of Southern Pannonian Basin]. Serbian Acad Sci Arts Monogr 450:1–145 (in Serbian with English abstract)Google Scholar
  23. Krstić N (1995a) Ostracodes of lower and middle Paludinian beds of Fruska Gora s.l. In: Marinescu Fl, Papaianopol I (eds) Chronostratigraphie und Neostratotypen—Neogene der Zentrale Paratethys, Bd. IX, Dacien Pl1. Rumänische Akademie, Bucarest, pp 387–427Google Scholar
  24. Krstić N (1995b) A new Cyclocypris subgenus—Laevicypris. In: Říha J (ed) Ostracoda and Biostatigraphy. Proceedings of the 12 international symposium on Ostracoda. AA Balkema, Rotterdam Brookfield, pp 37–42Google Scholar
  25. Malz H, Moayedpour E (1973) Miozäne Süßwasser-Ostracoden aus der Rhön. Senck leth 54:281–309Google Scholar
  26. Mandelstam MI, Schneider GF (1963) Iskopaemye ostrakody SSSR, semejstvo Cyprididae [Fossil ostracods of the USSR, family Cyprididae]. Trudy VNIGRI 203:1–242 (in Russian)Google Scholar
  27. Marmonier P, Meisch C, Danielopol DL (1989) A review of the genus Cavernocypris Hartmann (Ostracoda, Cypridopsinae): systematics, ecology and biogeography. Bull Soc Nat Luxembourg 89:221–278Google Scholar
  28. Martens K (1994) Ostracod speciation in ancient lakes: a review. In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes. Arch Hydrobiol Beih Ergebn Limnol 44:203–222Google Scholar
  29. Martens K (1997) Speciation in ancient lakes. Trends Ecol Evol 12:177–182CrossRefGoogle Scholar
  30. Martens K, Coulter G, Goddeeris B (1994) Speciation in Ancient lakes—40 years after Brooks. In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes. Arch Hydrobiol Beih Ergebn Limnol 44:75–96Google Scholar
  31. Martens K, Rossetti G, Fuhrmann R (1997) Pleistocene and Recent species of the family Darwinulidae Brady & Norman, 1889 (Crustacea, Ostracoda) in Europe. Hydrobiol 357:99–116CrossRefGoogle Scholar
  32. McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358CrossRefGoogle Scholar
  33. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–169CrossRefGoogle Scholar
  34. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Heidelberg, BerlinGoogle Scholar
  35. Mikulić F (1961) Neue Arten Candona aus dem Ohridsee. Bull Mus Hist Nat B 17:87–108 (in Serbian with German abstract)Google Scholar
  36. Mostafawi N (1994) Süßwasser-Ostracoden aus dem Ober-Pliozän von N-Euböa (Griechland). Neues Jahrb Geol P-M 5:309–319Google Scholar
  37. Mostafawi N (1996) Neogene Ostracodenfaunen im Gebiet südlich von Thessaloniki (Nordgriechenland). Senck Leth 76:159–173CrossRefGoogle Scholar
  38. Nemčok M, Lexa J (1990) Evolution of the basin and range Structure around the Žiar Mountain range. Geol Zbor Geol Carpath 41:229–258Google Scholar
  39. Nemčok M, Hók J, Kováč P, Marko F, Coward MP, Madarás J, Houghton JJ, Bezák V (1998) Tertiary development and extension/compression interplay in the West Carpathians mountain belt. Tectonophysics 290:137–167CrossRefGoogle Scholar
  40. Pin C, Bassin C (1992) Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials. Anal Chim Acta 269:249–255CrossRefGoogle Scholar
  41. Pipík R (2001) Les Ostracodes d’un lac ancien et ses paléobiotopes au Miocène supérieur: le Bassin de Turiec (Slovaquie). Thesis, Université Claude-Bernard, Lyon IGoogle Scholar
  42. Pipík R (2004) Sladkovodné lastúrničky (Ostracoda) a vrchnomiocénne paleobiotopy severnej časti Tučianskej kotliny [Freshwater ostracods (Ostracoda) and Upper Miocene paleobiotopes of the northern part of the Turiec Depression (Slovakia)]. Mineralia Slov 36:87–100 (in Slovak with English abstract)Google Scholar
  43. Pipík R (2005) Vrchnomiocénne sladkovodné lastúrničky (Ostracoda) okrajových sedimentov turčianskeho súvrstvia [Upper Miocene freshwater ostracods (Ostracoda) of the littoral deposits of the Turiec Formation]. Mineralia Slov 37:27–40 (in Slovak with English abstract)Google Scholar
  44. Pipík R, Bodergat AM (2003a) Ostracodes du Miocène supérieur du Bassin de Turiec (Slovaquie): familles Darwinulidae et Ilyocyprididae. Rev Esp Micropaleont 35:345–355Google Scholar
  45. Pipík R, Bodergat AM (2003b) Upper Miocene Ostracods of the Turiec Basin (Slovakia)—sub-family Cyclocypridinae. Ann Limnol-Int J Lim 39:347–361CrossRefGoogle Scholar
  46. Pipík R, Bodergat AM (2004a) Cyprididae (Ostracoda) du Miocène supérieur du Bassin de Turiec (Slovaquie): Taxonomie et Paléoécologie. Rev Micropaléont 47:225–242CrossRefGoogle Scholar
  47. Pipík R, Bodergat AM (2004b) Euxinocythere (Ostracoda, Cytheridae, Leptocytherinae) du Miocène supérieur du Bassin de Turiec (Slovaquie): taxonomie et paléoécologie. Rev Micropaléont 47:36–52CrossRefGoogle Scholar
  48. Pipík R, Bodergat AM (2006) Groupe de Candona clivosa, nouveau groupe de Candoninae (Crustacea, Ostracoda) et sa diversification dans le Bassin de Turiec (Slovaquie) au Miocène supérieur. Géobios 39:394–414CrossRefGoogle Scholar
  49. Pipík R, Bodergat AM (2007) Candoninae trapézoïdales (Crustacea, Ostracoda) du Bassin de Turiec (Slovaquie) du Miocène supérieur—systématique, écologie et évolution. Géobios 40:645–676CrossRefGoogle Scholar
  50. Pipík R, Bodergat AM (2008) Nouvelle faune d’ostracodes d’eau douce du Miocène supérieur de la Paratéthys Centrale et description d’espèces appartenant aux genres Pseudocandona, Fabaeformiscandona et Candonopsis. Palaeontogr Abt A 286:89–121Google Scholar
  51. Pipík R, Fordinál K, Slamková M, Starek D, Chalupová B (2004) Annotated checklist of the Pannonian microflora, evertebrate and vertebrate community from Studienka, Vienna Basin. Scripta Fac Sci Nat Univ Masaryk Brun Geol 31–32:47–54Google Scholar
  52. Pokorný V (1954) Paleontologický výzkum neogenních vrstev v oblasti Sučany—Kl'ačany (Paleontological investigation of the Neogene deposits in vicinity of Sučany—Kl'ačany). Věstnik Ústředního ústavu geologického 29:81–84 (in Czech)Google Scholar
  53. Rakús M, Hók J, Král’ J, Kotulová J (2005) The Turčianska kotlina depression an example of the strike-slipe basin. Geolines 19:97–98Google Scholar
  54. Semhi K, Clauer N, Probst JL (2000) Strontium isotope compositions of river waters as records of lithology-dependent mass transfers: the Garonne river and its tributaries (SW France). Chem Geol 168:173–193CrossRefGoogle Scholar
  55. Shapkarev JA (1980) Composition and variation of the bottom fauna in the sublittoral of the eutrophic lake Doiran (Macedonia, Yugoslavia). In: Dokulil M, Metz H, Jewson D (eds) Developments in Hydrobiology 3—Shallow lakes, Contribution to their Limnology. Dr. W. Junk Bv Publishers, The Hague Boston London, pp 195–201Google Scholar
  56. Sitár V (1969) Die Paläoflora des Turiec-Beckens und ihre Beziehung zu den Mitteleuropäischen Floren. Acta Geol Geogr Univ Comenianae Geol 17:191–206Google Scholar
  57. Stanković S (1960) The Balkan Lake Ohrid and its living world. Uitgeverij Dr. W. Junk, Den HaagGoogle Scholar
  58. Straub EW (1952) Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm a.d. Donau. Geol Jb 66:433–524Google Scholar
  59. Witt W (2000) Süßwasserostracoden der miozänen Vorlandmolasse Süddeutschland. Mitt Bayer Staatsslg Paläont hist Geol 40:109–151Google Scholar
  60. Zbořil L, Šefara J, Halmešová S, Král’ M, Puchnerová M, Stránska M, Szalaiová V (1985) Geofyzikálny výskum Turčianskej kotliny [Geophysical research of the Turiec Depression]. Manuscript, Geofond Bratislava (in Slovak)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Radovan Pipík
    • 1
    Email author
  • Anne-Marie Bodergat
    • 2
    • 3
  • Danielle Briot
    • 4
  • Michal Kováč
    • 5
  • Ján Král’
    • 6
  • Grzegorz Zielinski
    • 7
  1. 1.Geological InstituteSlovak Academy of SciencesBanská BystricaSlovak Republic
  2. 2.UMR 5125 PEPS CNRSVilleurbanne CedexFrance
  3. 3.Université Lyon 1, Laboratoire de Géologie de Lyon Terre, Planètes, EnvironnementVilleurbanneFrance
  4. 4.Université Blaise Pascal Clermont-Ferrand II, UMR 6524 “Laboratoire Magmas et Volcans”Clermont-Ferrand CedexFrance
  5. 5.Department of Geology and PaleontologyComenius UniversityBratislavaSlovak Republic
  6. 6.State Geological Institute of Dionýz ŠtúrBratislavaSlovak Republic
  7. 7.Institute of Geological SciencesPolish Academy of SciencesWarszawaPoland

Personalised recommendations