Journal of Paleolimnology

, Volume 47, Issue 1, pp 125–139 | Cite as

A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years

  • Jessica R. RodysillEmail author
  • James M. Russell
  • Satria Bijaksana
  • Erik T. Brown
  • La Ode Safiuddin
  • Hilde Eggermont
Original Paper


Variations in the location and strength of convection in the Western Pacific Warm Pool (WPWP) have a profound impact on the distribution and amount of global rainfall. Much of the variability in WPWP convection is attributed to variations in the El Niño-Southern Oscillation, for which the long-term trends and forcing mechanisms remain poorly understood. Despite the importance of WPWP convection to global climate change, we have very few paleohydrological reconstructions from the region. Here we present a new paleolimnologic and paleohydrologic record spanning the past 1,400 years using a multi-proxy dataset from Lake Logung, located in East Java, Indonesia that provides insights into centennial-scale trends in warm pool hydrology. Organic matter δ13C data indicate that East Java became wetter over the last millennium until ca. 1800 Common Era (CE), consistent with evidence for the southward migration of the Intertropical Convergence Zone (ITCZ) during this time. Superimposed on this long-term trend are four decade- to century-scale droughts, inferred from organic matter δ13C and calcite abundance data. They are centered at 1030, 1550, 1830, and 1996 CE. The three more recent droughts correlate with hydrologic anomalies documented in other proxy records from the WPWP region on both sides of the equator, and the two most recent droughts correlate in time with historically documented periods of multiple, intense El Niño events. Thus, our record provides strong evidence that century-scale hydrologic variability in this region relates to changes in the Walker Circulation. Human activity within the lake catchment is apparent since 1860 CE.


Indonesia Drought Lake Logung Western Pacific Warm Pool ENSO ITCZ 



We thank Dave Murray, Joe Orchardo, and Candice Bousquet for laboratory assistance. We also thank the Limnological Research Center for assistance with Corewall and X-ray diffraction. We thank the anonymous reviewers whose comments improved the quality of this manuscript. We thank the Government of Indonesia and Indonesian Ministry of Research and Technology (RISTEK) for permission and assistance in conducting field research. This research was funded by NOAA award NA09OAR4310107 and a National Geographic Society research grant to J. Russell.


  1. Appleby PG (1997) Sediment records of fallout radionuclides and their application to studies of sediment–water interactions. Water Air Soil Pollut 99:573–586Google Scholar
  2. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8CrossRefGoogle Scholar
  3. Björck S, Håkansson S (1982) Radiocarbon dates from Late Weichselian lake sediments in South Sweden as a basis for chronostratigraphic subdivisions. Boreas 11:141–150CrossRefGoogle Scholar
  4. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemispheric cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  5. Brown ET, Johnson TC, Scholz CA, Cohen AS, King JW (2007) Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophys Res Lett 34:L20702. doi: 10.1029/2007GL031240 CrossRefGoogle Scholar
  6. Byron N, Shepherd G (1998) Indonesia and the 1997–98 El Niño: fire problems and long-term solutions. Nat Resour Perspect 28, ISSN: 1356-9228Google Scholar
  7. Cane MA (1983) Oceanographic events during El Niño. Science 222:1189–1195CrossRefGoogle Scholar
  8. Cane MA (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 230:227–240CrossRefGoogle Scholar
  9. Carn SA, Pyle DM (2001) Petrology and geochemistry of the Lamongan Volcanic Field, East Java, Indonesia: primitive Sunda Arc magmas in an extensional tectonic setting? J Petrol 42:1643–1683CrossRefGoogle Scholar
  10. Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454CrossRefGoogle Scholar
  11. Crausbay SD, Russell JM, Schnurrenberger DW (2006) A ca. 800-year lithological record of drought from sub-annually laminated lake sediment, East Java. J Paleolimnol 35:641–659CrossRefGoogle Scholar
  12. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  13. Faure G (1998) Principles and applications of geochemistry. Prentice Hall, Upper Saddle River, p 600Google Scholar
  14. Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 73–98CrossRefGoogle Scholar
  15. Goldsmith JR, Graf DL (1958) Relation between lattice constants and composition of the Ca–Mg carbonates. Am Mineral 43:84–101Google Scholar
  16. Green J, Corbet SA, Watts E, Lan OB (1976) Ecological studies on Indonesian lakes. Overturn and restratification of Lake Lamongan. J Zool 180:315–354CrossRefGoogle Scholar
  17. Griffiths ML, Drysdale RN, Gagan MK, Zhao J-x, Ayliffe LK, Hellstrom JC, Hantoro WS, Frisia S, Feng Y-x, Cartwright I, St. Pierre E, Fischer MJ, Suwargadi BW (2009) Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat Geosci 2:636–639CrossRefGoogle Scholar
  18. Grove RH (1998) Global impact of the 1789–93 El Niño. Nature 393:318–319CrossRefGoogle Scholar
  19. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  20. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15:612–618CrossRefGoogle Scholar
  21. Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Climate 16:1775–1790CrossRefGoogle Scholar
  22. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214CrossRefGoogle Scholar
  23. Hollander DJ, McKenzie HL (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19:929–932CrossRefGoogle Scholar
  24. Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63:1383–1404CrossRefGoogle Scholar
  25. Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, physics, geology. Springer, New York, pp 295–323Google Scholar
  26. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576Google Scholar
  27. McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283:950–954Google Scholar
  28. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  29. Müller G, Irion G, Förstner U (1972) Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment. Naturwissenschaften 59:158–164CrossRefGoogle Scholar
  30. Myrbo A (2008) Sedimentary and historical context of eutrophication and remediation in urban Lake McCarrons (Roseville, Minnesota). Lake Reserv Manage 24:349–360CrossRefGoogle Scholar
  31. Naylor RL, Falcon WP, Rochberg D, Wada N (2001) Using El Niño/Southern Oscillation climate data to predict rice production in Indonesia. Clim Change 50:255–265CrossRefGoogle Scholar
  32. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336CrossRefGoogle Scholar
  33. O’Sullivan PE, Oldfield F, Battarbee RW (1973) Preliminary studies of Lough Neagh sediments I. Stratigraphy, chronology and pollen analysis. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell Scientific Publications, Oxford, pp 267–278Google Scholar
  34. Oppo DW, Rosenthal Y, Linsley BK (2009) 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460:1113–1116CrossRefGoogle Scholar
  35. Pierrehumbert RT (2000) Climate change and the tropical Pacific: the sleeping dragon wakes. Proc Natl Acad Sci 97:1355–1358CrossRefGoogle Scholar
  36. Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040CrossRefGoogle Scholar
  37. Poesponegoro MD, Notosusanto N (1984) Sejarah Nasional Indonesia (Indonesian National History) Book IV. PN Balai PustakaGoogle Scholar
  38. Quinn WH, Zopf DO, Short KS, Kuo Yang RTW (1978) Historical trends and statistics of the Southern Oscillation, El Niño, and Indonesian droughts. Fish Bull 76:663–678Google Scholar
  39. Rao A, Rack F, Kamp B, Fils D, Ito E, Morin P, Higgins S, Leigh J, Johnson A, Renambot L (2005) CoreWall: a scalable interactive tool for visual core description, data visualization, and stratigraphic correlation. Eos Trans AGU 86(52), Fall Meet Suppl, San Francisco, CA, 5 Dec 2005Google Scholar
  40. Russell JM, Johnson TC (2005) A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quat Sci Rev 24:1375–1389CrossRefGoogle Scholar
  41. Russell JM, Johnson TC, Kelts KR, Laerdal T, Talbot MR (2003) An 11,000 year lithostratigraphic and paleohydrologic record from equatorial Africa: Lake Edward, Uganda-Congo. Palaeogeogr Palaeoclimatol Palaeoecol 193:25–49CrossRefGoogle Scholar
  42. Russell JM, McCoy SJ, Verschuren D, Bessems I, Huang Y (2009) Human impacts, climate change, and aquatic ecosystem response during the past 2000 yr at Lake Wandakara, Uganda. Quat Res 72:315–324CrossRefGoogle Scholar
  43. Sachs JP, Sachse D, Smittenberg RH, Zhang Z, Battisti D, Golubic S (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci 2:519–525CrossRefGoogle Scholar
  44. Schnurrenberger D, Russell JM, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154CrossRefGoogle Scholar
  45. Shapley MD, Ito E, Donovan JJ (2005) Authigenic calcium carbonate flux in groundwater-controlled lakes: Implications for lacustrine paleoclimate records. Geochim Cosmochim Acta 69:2517–2533CrossRefGoogle Scholar
  46. Shapley MD, Ito E, Forester RM (2010) Negative correlations between Mg:Ca and total dissolved solids in lakes: False aridity signals and decoupling mechanisms for paleohydrologic proxies. Geology 38:427–430CrossRefGoogle Scholar
  47. Stoermer EF, Emmert G, Julius ML, Schelske CL (1996) Paleolimnologic evidence of rapid recent change in Lake Erie’s trophic status. Can J Fish Aquat Sci 53:1451–1458CrossRefGoogle Scholar
  48. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  49. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279Google Scholar
  50. Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Kluwer, Dordrecht, pp 401–439CrossRefGoogle Scholar
  51. Talbot MR, Kelts K (1986) Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14:912–916CrossRefGoogle Scholar
  52. Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin P-N (2000) A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science 289:1916–1919CrossRefGoogle Scholar
  53. Tierney JE, Oppo DW, Rosenthal Y, Russell JM, Linsley BK (2010) Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography 25:PA1102. doi: 10.1029/2009PA001871 CrossRefGoogle Scholar
  54. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76Google Scholar
  55. Verschuren D (1993) A lightweight extruder for accurate sectioning of soft-bottom lake sediment cores in the field. Limnol Oceanogr 38:1796–1802CrossRefGoogle Scholar
  56. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid J (1992) The Global Historical Climatology Network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  57. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857CrossRefGoogle Scholar
  58. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-yr Chinese cave record. Science 322:940–942CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jessica R. Rodysill
    • 1
    Email author
  • James M. Russell
    • 1
  • Satria Bijaksana
    • 2
  • Erik T. Brown
    • 3
  • La Ode Safiuddin
    • 4
  • Hilde Eggermont
    • 5
  1. 1.Department of Geological SciencesBrown UniversityProvidenceUSA
  2. 2.Faculty of Mining and Petroleum EngineeringInstitut Teknologi BandungBandungIndonesia
  3. 3.Large Lakes Observatory and Department of Geological SciencesUniversity of Minnesota DuluthDuluthUSA
  4. 4.Faculty of Mathematics and Natural SciencesInstitut Teknologi BandungBandungIndonesia
  5. 5.Freshwater BiologyRoyal Belgian Institute of Natural SciencesBrusselsBelgium

Personalised recommendations