Advertisement

Journal of Paleolimnology

, Volume 46, Issue 3, pp 453–467 | Cite as

Two hundred years of environmental change in Picos de Europa National Park inferred from sediments of Lago Enol, northern Iberia

  • Lourdes López-Merino
  • Ana Moreno
  • Manel Leira
  • Javier Sigró
  • Penélope González-Sampériz
  • Blas L. Valero-Garcés
  • José Antonio López-Sáez
  • Manola Brunet
  • Enric Aguilar
Original paper

Abstract

We present a study of two short sediment cores recovered from Lago Enol, in the Picos de Europa National Park, Cantabrian Mountains, northern Iberia. We inferred past climate conditions and anthropogenic impacts using geochemical and biological (pollen and diatoms) variables in the dated sequences, in conjunction with temperature and precipitation data collected since 1871 at meteorological stations in the region. The record provides evidence of environmental changes during the last 200 years. At the end of the Little Ice Age (~1800–1875 AD) the region was characterized by an open landscape. Long-term use of the area for mixed livestock grazing in the mountains, and cultivation of rye during the nineteenth century, contributed to the expansion of grassland at the expense of forest. Warmer temperatures since the end of the nineteenth century are inferred from a change in diatom assemblages and development of the local forest. Socioeconomic transformation during the twentieth century, such as livestock changes related to dairy specialization, planting of non-native trees, mining activities, and management of the national park since its creation in 1918, caused profound changes in the catchment and in the lake ecology. The last several decades (~1970–2007 AD) of the Lago Enol sediment record are strikingly different from previous periods, indicating lower runoff and increasing lake productivity, particularly since AD 2000. Today, the large number of tourists who visit the area cause substantial impacts on this ecosystem.

Keywords

Picos de Europa National Park Anthropogenic impact Little Ice Age Geochemistry Pollen Diatoms 

Notes

Acknowledgments

M. Leira, A. Moreno and L. López-Merino contributed equally to this work. This research was funded through the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01), CLICAL (CICYT: CGL2006-13327-C04-03/CLI) and GRACCIE (CSD2007-00067) provided by the Spanish Inter-Ministry Commission of Science and Technology (CICYT). Additional funding was provided by the Spanish National Parks agency through the project “Evolución climática y ambiental del Parque Nacional de Picos de Europa desde el último máximo glaciarref: 53/2006”. A. Moreno acknowledges funding from the “Ramón y Cajal” postdoctoral program, and L. López-Merino is currently supported by a postdoctoral research grant (Spanish Ministry of Education) at Brunel University (UK). We are indebted to María José Domínguez-Cuesta for the location figure and IPE-CSIC laboratory staff for their collaboration in this research. The director and staff of the Picos de Europa National Park are also acknowledged for their help on the sampling campaigns and on the compilation of data about the human activities in the park area (Miguel Menéndez and Amparo Mora). We also wish to thank the three anonymous referees who provided useful criticisms, information, points of view, and valuable suggestions to improve the manuscript.

References

  1. Agustí-Panareda A, Thompson R (2002) Reconstructing air temperatures at eleven remote alpine and artic lakes in Europe from 1781 to 1997 AD. J Paleolimnol 28:7–23CrossRefGoogle Scholar
  2. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Calhalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202Google Scholar
  3. Brunet M, Saladié O, Jones PD, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, López D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Intl J Climatol 26:1777–1802CrossRefGoogle Scholar
  4. Brunet M, Jones PD, Sigró J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi: 10.1029/2006JD008249 CrossRefGoogle Scholar
  5. Brunet M, Saladié O, Jones P, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, Almarza C (2008) A case-study/guidance on the development of long-term daily adjusted temperature datasets. WMO-TD-1425/WCDMP-66, GenevaGoogle Scholar
  6. Büntgen U, Frank D, Grudd H, Esper J (2008) Long-term summer temperature variations in the Pyrenees. Clim Dyn 31:615–631CrossRefGoogle Scholar
  7. Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2047–2066CrossRefGoogle Scholar
  8. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multifunction X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis vol 267. Geological Society, London, pp 51–63 (Special Publications)Google Scholar
  9. de Castro M, Martín-Vide J, Alonso S, 17 contributing authors (2005) The climate of Spain: Past, present and scenarios for the 21st century. In: Impacts of climate change in Spain, Publicaciones Ministerio de Medio Ambiente, Madrid, 207–218. ISBN: 84-934207-0-0Google Scholar
  10. De Lange GJ, Van Os B, Pruysers PA, Middelburg JJ, Castradori D, Van Santvoort P, Müller P, Eggenkamp H, Prahl F (1994) Possible early diagenetic alteration of paleo proxies. In: Zahn R (ed) Carbon cycling in the Glacial Ocean. Springer. NATO ASI Series,pp 225–257Google Scholar
  11. Domínguez Martín R, Puente Fernández L (1995) Condicionantes e itinerarios del cambio técnico en la ganadería cántabra, 1750–1930. Historia Agraria 9:69–86Google Scholar
  12. García Dory MA (1977) Covadonga National Park, Asturias, Spain. Its history, conservation interest and management problems. Biol Cons 11:79–85CrossRefGoogle Scholar
  13. Goeury C, De Beaulieu JL (1979) À propos de la concentration du pollen à l’aide de la liqueur de Thoulet dans le sédiments minéraux. Pol Spor 21:239–251Google Scholar
  14. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp Geosci 13:13–35CrossRefGoogle Scholar
  15. Grimm EC (1992) Tilia version 2. Springfield. IL 62703. Illinois State Museum, Research and Collection Center, USAGoogle Scholar
  16. Grimm EC (2004) TGView. Illinois State Museum, SpringfieldGoogle Scholar
  17. Huber K, Weckström K, Drescher-Schneider R, Knoll J, Schmidt J, Schmidt R (2010) Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). J Paleolimnol 43:131–147CrossRefGoogle Scholar
  18. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernamental panel on climate change. Cambridge University Press, Cambridge, pp 1–142Google Scholar
  19. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  20. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42. doi: 10.1029/2003RG000143
  21. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667CrossRefGoogle Scholar
  22. Jones PD, Briffa KR, Osborn TJ, Lough JM, Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  23. Juggins S (2007) C2 Software for ecological and palaeoecological data analysis and visualisation. User guide, version 1.5. Newcastle University, Newcastle upon Tyne, UKGoogle Scholar
  24. Kendall S (1976) Time series, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  25. Kienel U, Schwab MJ, Schettler G (2005) Distinguishing climatic from direct anthropogenic influences during the past 400 years in varved sediments from Lake Holzmaar (Eifel, Germany). J Paleolimnol 33:327–347CrossRefGoogle Scholar
  26. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Fischer, StuttgartGoogle Scholar
  27. Lange-Bertalot H, Metzeltin D (1996) Indicators of oligotrophy. 800 taxa representative of three ecologically distinct lake types: carbonate buffered-oligodystrophic-weakly buffered soft water. Koeltz Scientific Books, KonigsteinGoogle Scholar
  28. Martínez Cortizas A, Pontevedra Pombal X, Nóvoa Muñoz JC, García-Rodeja E, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939–942CrossRefGoogle Scholar
  29. Martín-Puertas C, Valero-Garcés BL, Mata P, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. Holocene 40:195–215Google Scholar
  30. Mayor López M (2002) Landscapes of northern Spain and pastoral systems. In: Redecker B, Finck P, Härdtle W, Riecken U, Schröder E (eds) Pasture landscapes and nature conservation. Springer, Heidelberg, Berlin, Germany and New York, pp 67–86CrossRefGoogle Scholar
  31. Montserrat P, Fillat F (1990) The systems of grassland management in Spain. In: Breymeyer A (ed) Managed grasslands, vol 17. Elsevier Science, Amsterdam, pp 37–70Google Scholar
  32. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, LondonGoogle Scholar
  33. Morabito G, Ruggiu D, Panzani P (2002) Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J Limnol 61:129–145Google Scholar
  34. Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero Ó, Engstrom DR, López-Vicente M, Navas A, Soto J (2009) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol. doi: 10.1007/s10933-009-9346-3
  35. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40:943–961CrossRefGoogle Scholar
  36. Moreno A, Valero-Garcés BL, Jiménez Sánchez M, Domínguez MJ, Mata P, Navas A, González-Sampériz P, Stoll H, Farias P, Morellón M, Corella P, Rico M (2010) The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). J Quat Sci 25:1076–1091CrossRefGoogle Scholar
  37. Moreno A, López-Merino L, Leira M, Marco-Barba J, González-Sampériz P, Valero-Garcés B, López-Sáez JA, Santos L, Mata P, Ito E (2009) Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J Paleolimnol. doi: 10.1007/s10933-009-9387-7
  38. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional mean time series. Dendrochronologia 15:89–99Google Scholar
  39. Rodríguez Castañón AA (1996) La producción de vacuno con rebaños de Asturiana de la Montaña: Ganadería extensiva en la Cordillera Cantábrica. Agricultura 764:214–217Google Scholar
  40. Rodríguez Terente LM, Luque Cabal C, Gutiérrez Claverol M (2006) Los registros mineros para sustancias metálicas en Asturias. Trabajos de Geología 26:19–55Google Scholar
  41. Rogora M, Mosello R, Arisci S, Brizzio MC, Barbieri A, Balestrini R, Waldner P, Scmhidt M, Stähli M, Thimonier A, Kalina M, Puxbaum H, Nickus U, Ulrich E, Probst A (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562:17–40CrossRefGoogle Scholar
  42. Rull V, López-Sáez J, Vegas-Vilarrúbia T (2008) Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). J Paleolimnol 40:399–411CrossRefGoogle Scholar
  43. Sáez A, Valero-Garcés BL, Moreno A, Bao R, Pueyo JJ, González-Sampériz P, Giralt S, Taberner C, Herrera C, Gibert RO (2007) Lacustrine sedimentation in active volcanic settings: the Late Quaternary depositional evolution of Lake Chungará (northern Chile). Sedimentology 54:1191–1222CrossRefGoogle Scholar
  44. Sáez A, Valero-Garcés BL, Giralt S, Moreno A, Bao R, Pueyo JJ, Hernández A, Casas D (2009) Glacial to Holocene climate changes in the SE Pacific. The Raraku Lake sedimentary record (Easter Island, 27°S). Quat Sci Rev 28:2743–2759CrossRefGoogle Scholar
  45. Sande Silva J (2007) Pinhais e eucaliptais. A foresta cultivada. Público, Comunicação, S.A. Fundação Luso-Americana para o desenvolvimento, LisboaGoogle Scholar
  46. Schindler DW, Beaty KG, Fee EJ, Cruickshnak DR, DeBruyn ER, Findlay DL, Linsey GA, Sheare JA, Stainton MP, Turner MA (1990) Effects of climate warming on lakes of the central boreal forest. Science 250:967–970CrossRefGoogle Scholar
  47. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  48. Suárez Antuña F, Herrán Alonso M, Ruiz Fernández J (2005) La adaptación del hombre a la montaña. El paisaje de Cabrales (Picos de Europa). Ería 68:373–389Google Scholar
  49. ter Braak CJF, Smilauer P (2002) CANOCO. Reference manual and CanocoDraw for Windows user′s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NYGoogle Scholar
  50. Velasco JL, Araujo R, Álvarez M, Colomer M, Baltanás A (1999) Aportación al conocimiento limnológico de ocho lagos y lagunas de montaña de Asturias (España). Bol R Soc Esp Hist Nat (Biol) 95:181–191Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lourdes López-Merino
    • 1
  • Ana Moreno
    • 2
  • Manel Leira
    • 3
  • Javier Sigró
    • 4
  • Penélope González-Sampériz
    • 2
  • Blas L. Valero-Garcés
    • 2
  • José Antonio López-Sáez
    • 5
  • Manola Brunet
    • 4
    • 6
  • Enric Aguilar
    • 4
  1. 1.Institute for the EnvironmentBrunel UniversityUxbridge, West London, MiddlesexUK
  2. 2.Instituto Pirenaico de Ecología (CSIC)ZaragozaSpain
  3. 3.Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
  4. 4.Centre for Climate Change (C3), Department of GeographyUniversity Rovira i VirgiliTarragonaSpain
  5. 5.G.I. Arqueobiología, Instituto de Historia (CCHS, CSIC)MadridSpain
  6. 6.Climatic Research Unit, School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations