Advertisement

Journal of Paleolimnology

, Volume 46, Issue 2, pp 257–272 | Cite as

A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present

  • Matthew A. KonfirstEmail author
  • Charlotte Sjunneskog
  • Reed P. Scherer
  • Peter T. Doran
Original paper

Abstract

We present a diatom record from a sediment core taken in Lake Fryxell, Taylor Valley, Antarctica. Six zones were defined using diatom assemblage changes that indicate varying limnological conditions. The early lake stage, ca. 35,000 cal years BP, is characterized by Mayamea atomus f. permitis, a species rarely reported in modern Antarctic Dry Valley environments. An extended period from ca. 35,000 to 19,000 cal years BP is characterized by low diatom abundance, with dominant taxa Luticola spp., Muelleria spp., and Diadesmis contenta. The modern assemblage was established ca. 13,000 cal years BP, after two relatively brief transitional stages. One key species for this recent period, Navicula lineola var. perlepida, is absent in surface sediments and the modern environment, indicating an environmental change within the last several centuries. The diatom assemblage is compared to modern diatom communities in Dry Valley streams, which provide the most complete information on diatom distributions in this region. Although precise environmental interpretation of the core is hampered by limited knowledge of environmental constraints on many of the diatom taxa present in the lake core, the data provide important new insights into the history of Glacial Lake Washburn.

Keywords

Lake Fryxell Diatom Paleolimnology Dry Valleys Glacial Lake Washburn Antarctica 

Notes

Acknowledgments

The authors wish to thank the McMurdo Long Term Ecological Research team for collecting the materials used for this study, NSF for financial support (NSF grant number ANT0423595), and the anonymous reviewers, whose input contributed greatly to this manuscript.

References

  1. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  2. Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391CrossRefGoogle Scholar
  3. Chinn TJH (1993) Physical hydrology of the dry valley lakes. In: Green W, Friedman EI (eds), Physical and biogeochemical processes in Antarctic Lakes. Antarctic Research Series AGU 59, pp 1–52Google Scholar
  4. Cunningham WL, Leventer A, Andrews JT, Jennings AE, Licht KJ (1999) Late Pleistocene-Holocene marine conditions in the Ross Sea, Antarctica: evidence from the diatom record. Holocene 9(2):129–139Google Scholar
  5. Doran P, Wharton RA Jr, Lyons WB (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10:85–114CrossRefGoogle Scholar
  6. Doran PT, Berger GW, Lyons WB, Wharton RA Jr, Davisson ML, Southon J, Dibb JE (1999) Dating quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 147:223–239CrossRefGoogle Scholar
  7. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520CrossRefGoogle Scholar
  8. Emslie SE, Coats L, Licht C (2007) A 45,000 yr record of Adele penguins and climate change in the Ross Sea, Antarctica. Geology 35:61–64CrossRefGoogle Scholar
  9. Esposito RMM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:1–4CrossRefGoogle Scholar
  10. Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead D, Parsons AN, Priscu JC, Wall DH, Wharton RA Jr, Virginia RA (1999) Physical controls on the Taylor Valley Ecosystem, Antarctica. Bioscience 49:961–971CrossRefGoogle Scholar
  11. Gooseff MN, McKnight DM, Lyons WB, Blum AE (2002) Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resour Res 38:151–1517CrossRefGoogle Scholar
  12. Hall B, Denton G (2000) Radiocarbon chronology of Ross Sea Drift, Eastern Taylor Valley, Antarctica: evidence from Taylor Valley for a grounded ice sheet in Ross Sea at the last glacial maximum. Geogr Ann A 82A:305–336CrossRefGoogle Scholar
  13. Hall B, Denton GH, Hendy CH (2000) Evidence from Taylor Valley for a grounded ice sheet in Ross Sea, Antarctica. Geogr Ann A 82A:275–303CrossRefGoogle Scholar
  14. Hendy C (2000) The role of polar lake ice as a filter for glacial lacustrine sediments. Geogr Ann A 82A:271–274CrossRefGoogle Scholar
  15. Hendy CH, Wilson AT, Popplewell KB, House DA (1977) Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climate changes. N Z J Geol Geop 20:1103–1122Google Scholar
  16. Hendy CH, Sadler AJ, Denton GH, Hall BL (2000) Proglacial lake-ice conveyors: a new mechanism for deposits of drift in polar environments. Geogr Ann A 82A:249–270CrossRefGoogle Scholar
  17. Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Recent rapid salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406CrossRefGoogle Scholar
  18. Jones VJ (1996) The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodivers Conserv 5:1433–1449CrossRefGoogle Scholar
  19. Kellogg DE, Stuiver M, Kellogg TB (1980) Non-marine diatoms from late Wisconsin perched deltas in Taylor Valley, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 30:157–189CrossRefGoogle Scholar
  20. Lawrence MJF, Hendy CH (1985) Water column and sediment characteristics of Lake Fryxell, Taylor Valley, Antarctica. New Zeal J Geol Geop 28:543–552Google Scholar
  21. Lawrence MJF, Hendy CH (1989) Carbonate deposition and Ross Sea Ice Advance, Fryxell Basin, Taylor Valley, Antarctica. N Z J Geol Geop 32:267–277Google Scholar
  22. Lyons WB, Tyler SW, Wharton RA Jr, McKnight DM, Vaughn BH (1998) A Late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarct Sci 10:247–256CrossRefGoogle Scholar
  23. Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724CrossRefGoogle Scholar
  24. Parker BC, Simmons M Jr, Love FG, Wharton RA Jr, Seaburg KG (1981) Modern stromatolites in the Antarctic dry valley lakes. Bioscience 31:72–78CrossRefGoogle Scholar
  25. Poreda RJ, Hunt AG, Lyons WB, Welch KA (2004) The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: timing of Late Holocene climate change in Antarctica. Aquat Geochem 10:353–371CrossRefGoogle Scholar
  26. Priscu JC (ed) (1998) Ecosystem processes in a polar desert: The McMurdo Dry Valleys, Antarctica. In: Antarctic Research Series vol. 72. American Geophysical Union, Washington, DC. 369 ppGoogle Scholar
  27. Quayle W, Peck L, Peat H, Ellis-Evans JC, Harrigan R (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645CrossRefGoogle Scholar
  28. Roberts EC, Priscu JC, Laybourn-Parry J (2004) Microplankton dynamics in a perennially ice-covered Antarctic lake- Lake Hoare. Freshw Biol 49:853–869CrossRefGoogle Scholar
  29. Sabbe K, Verleyen E, Hodgson DA, Vanhoutte K, Vyverman W (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarct Sci 15:227–248CrossRefGoogle Scholar
  30. Scherer RP (1987) Paleoenvironmental studies of non-marine diatoms in Quaternary Antarctic sediments. Antarctic Jour of the U.S. 1987 Review 22:35–37Google Scholar
  31. Spaulding SA, McKnight DM, Stoermer EF, Doran PT (1997) Diatoms in sediment of perennially ice–covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:403–420CrossRefGoogle Scholar
  32. Spaulding SA, Kociolek JP, Wong D (1999) A taxonomic and systematic revision of the genus Muelleria (Bacillariophyta). Phycologia 38:314–341CrossRefGoogle Scholar
  33. Squyres SW, Andersen DW, Nedell SS, Wharton RA Jr (1991) Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover. Sedimentology 38:363–379CrossRefGoogle Scholar
  34. Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Twickler MS, Whitlow SI (2000) Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr Ann A 82A:213–235CrossRefGoogle Scholar
  35. Stevenson RJ, Bahls LL (1999) Periphyton protocols. In: Barbour MT, Gerritsen J, Snyder EPA (eds) Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates, and fish. EPA 841-B-99-002 US EPA, Washington, DC, pp 6-1 through 6-22Google Scholar
  36. Stuiver M, Denton GH, Hughes TJ, Fastook JL (1981) History of the marine ice sheet in west Antarctica during the last glaciations, a working hypothesis. In: Denton GH, Hughes TH (eds) The last great ice sheets. Wiley-Interscience, NY, pp 319–436Google Scholar
  37. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, pp 1–500Google Scholar
  38. Van De Vijver B, Beyens L (1999) Biogeography and ecology of freshwater diatoms in Subantarctica: a review. J Biogeogr 26:993–1000CrossRefGoogle Scholar
  39. Van de Vijver B, Frenot Y, Beyens L (2002) Freshwater diatoms from Ile de la possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica 46:412Google Scholar
  40. Verleyen E, Hodgson DA, Vyverman W, Roberts D, McMinn A, Vanhoutte K, Sabbe K (2003) Modeling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. J Paleolimnol 30:195–215CrossRefGoogle Scholar
  41. Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812CrossRefGoogle Scholar
  42. Wagner B, Melles M, Doran P, Kenig F, Forman S, Pierau R, Allen P (2006) Glacial and postglacial sedimentation in the Fryxell Basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 241:320–337CrossRefGoogle Scholar
  43. Wharton RA Jr, Parker B, Simmons G Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365CrossRefGoogle Scholar
  44. Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1986) Oxygen budget of a perennially ice-covered Antarctic lake. Limnol Oceanogr 31:437–443CrossRefGoogle Scholar
  45. Wharton RA Jr, McKay CP, Clow GD, Andersen DT (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. In: Green W, Friedman EI (eds) Physical and biogeochemical processes in Antarctic Lakes. Antarctic Research Series AGU 59, pp 53–72Google Scholar
  46. Whittaker TE, Hall BL, Hendy CH, Spaulding SA (2008) Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica. Holocene 18:775–786CrossRefGoogle Scholar
  47. Wilson AT (1964) Evidence from chemical diffusions of a climatic change in the McMurdo Dry Valley 1200 years ago. Nature 201:176–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Matthew A. Konfirst
    • 1
    Email author
  • Charlotte Sjunneskog
    • 1
  • Reed P. Scherer
    • 1
  • Peter T. Doran
    • 2
  1. 1.Geology and Environmental GeosciencesNorthern Illinois UniversityDeKalbUSA
  2. 2.Earth and Environmental SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations