Journal of Paleolimnology

, Volume 46, Issue 1, pp 1–15 | Cite as

Changes in diatom assemblages since pre-industrial times in 40 reference lakes from the Experimental Lakes Area (northwestern Ontario, Canada)

  • Mihaela D. Enache
  • Andrew M. Paterson
  • Brian F. Cumming
Original paper


Diatom assemblages in recent versus pre-industrial sediments were examined in 40 relatively undisturbed lakes from the Experimental Lakes Area (ELA). The ELA region of northwestern Ontario receives low amounts of acidic deposition and the lakes have been minimally disturbed by watershed development or other human activities. Consequently, this region represents an important location to detect possible changes in lakes due to climate change. In over half of the lakes, planktonic taxa (especially Discostella stelligera) increased between 10 and 40% since pre-industrial times. Changes in diatom assemblages are consistent with taxa that would benefit from enhanced stratification and a longer ice-free season. We hypothesized that there should be a relationship between stratification and measured chemical and physical characteristics of the study lakes. Multiple correlation analysis was undertaken to see the relationship between planktonic taxa and D. stelligera since pre-industrial times and the physical and chemical characteristics of the study lakes. Lake depth was consistently identified as an important variable. The timing of the increase in planktonic taxa within cores from these lakes will be needed to rule out other possible regional changes that may also be occurring in the ELA region.


Diatoms Climate Lake Experimental Lakes Area Paleolimnology Reference lakes 



We acknowledge the assistance of Christina Clarke, Chris Lorenz, Erin MacMillan, and Shelley Wilkinson for providing assistance with logistics and coring. This manuscript was improved with comments from Drs. K. Laird and K. Rühland. Funding for analyses and some of the fieldwork was provided by a grant to BFC under the Best in Science program of the Ontario Ministry of the Environment, with additional funding for fieldwork provided by a NSERC Discovery Grant to BFC.


  1. Adrian R, Waltz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632CrossRefGoogle Scholar
  2. Austin JA, Colman SM (2007) Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett 34:L06604. doi: 10.1029/2006GL02921 CrossRefGoogle Scholar
  3. Battarbee RW, Charles DF, Bigler C, Cumming BF, Renberg I (2010) Diatoms as indicator of lake-water acidity. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 98–121Google Scholar
  4. Blenkner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG, Jankowski T, Järvinen M, Aonghusa CN, Nõges T, Straile D, Teubner K (2007) Large-scale signatures in lakes across Europe: a meta—analysis. Glob Change Biol Postprint. doi: 10.1111/j.1365-2486.2007.01364.x
  5. Blumberg AF, Di Toro DM (1990) Effects of climate warming on dissolved oxygen concentrations in Lake Erie. Am Fish Soc 119:210–223CrossRefGoogle Scholar
  6. Bradbury JP, Cumming BF, Laird KR (2002) A 1500-year record of climatic and environmental change in Elk Lake, Minnesota III: measures of past primary productivity. J Paleolimnol 27:321–340CrossRefGoogle Scholar
  7. Camburn KE, Charles DF (2000) Diatoms of low-alkalinity Lakes in the Northeastern United States. The Academy of Natural Sciences Philadelphia, Philadelphia, U.S.A, p 152Google Scholar
  8. Cumming BF, Smol JP, Kingston JC, Charles DF, Birks HJB, Camburn KE, Dixit SS, Uutala AJ, Selle AR (1992) How much acidification has occurred in Adirondack region (New York, USA) lakes since pre-industrial times? Can J Fish Aquat Sci 49:128–141CrossRefGoogle Scholar
  9. Cumming BF, Davies KE, Smol JP, Birks HJB (1994) When did acid sensitive Adirondack (New York, USA) lakes begin to acidify and are they still acidifying? Can J Fish Aquat Sci 51:1550–1568CrossRefGoogle Scholar
  10. Cumming BF, Wilson SE, Hall RI, Smol JP (1995) Diatoms from British Columbia (Canada) Lakes and their relationship to salinity, nutrients and other limnological variables (with 248 figures, 6 tables and 1041 photos on 60 plates). Bibl Diatomol 31. Stuttgart, Germany, pp 207Google Scholar
  11. Fee EJ, Hecky RE, Kassian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920CrossRefGoogle Scholar
  12. Findlay DL, Shearer JA (1992) Relationships between sedimentary diatom assemblages and lakewater pH values in the experimental Lakes Area. J Paleolimnol 7:145–156CrossRefGoogle Scholar
  13. Findlay DL, Kasian SEM, Stainton MP, Beaty K, Lyng M (2001) Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnol Oceanogr 46:1789–1793Google Scholar
  14. Forrest F, Reavie E, Smol JP (2002) Comparing limnological changes associated with 19th century canal construction and other catchment disturbances in four lakes within the Rideau Canal system, Ontario, Canada. J Limnol 61:183–197Google Scholar
  15. Fritz SC, Kingston JC, Engstrom DR (1993) Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshw Biol 30:1–23CrossRefGoogle Scholar
  16. Fritz SC, Cumming BF, Gasse F, Laird KR (2010) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 186–208Google Scholar
  17. Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic oscillation signal among Lakes. Limnol Oceanogr 46:448–455CrossRefGoogle Scholar
  18. Ginn B, Cumming BF, Smol JP (2007a) Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada. Can J Fish Aquat Sci 64:1043–1054CrossRefGoogle Scholar
  19. Ginn B, Cumming BF, Smol JP (2007b) Long-term acidification trends in high- and low-sulphate deposition regions from Nova Scotia, Canada. Hydrobiologia 586:261–275CrossRefGoogle Scholar
  20. Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Vol 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 73–105Google Scholar
  21. Hall RI, Smol JP (2010) Diatoms as indicators of lake eutrophication. In: Stoermer EF, Smol JP (eds) The diatoms: application for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 122–151Google Scholar
  22. Harris MA, Cumming BF, Smol JP (2006) Assessment of recent changes in New Brunswick (Canada) Lakes based on paleolimnological shifts in diatom species assemblages. Can J Bot 84:151–163. doi: 10.1139/B05-157 CrossRefGoogle Scholar
  23. Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282CrossRefGoogle Scholar
  24. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart/New York, p 876Google Scholar
  25. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart/New York, p 596Google Scholar
  26. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart/Jena, p 576Google Scholar
  27. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart/Jena, p 437Google Scholar
  28. Laird KR, Cumming BF (2001) A regional paleolimnological assessment of the impact of clearcutting on lakes from the central interior of British Columbia. Can J Fish Aquat Sci 58:492–505CrossRefGoogle Scholar
  29. Laird KR, Cumming BF (2008) Reconstruction of Holocene lake level from diatoms, chrysophytes, and organic matter in a drainage lake from the Experimental Lakes Area (northwestern Ontario, Canada). Quat Res 69:292–305CrossRefGoogle Scholar
  30. Laird KR, Cumming BF, Nordin R (2001) A regional paleolimnological assessment of the impact of clearcutting from the west coast of Vancouver Island, British Columbia. Can J Fish Aquat Sci 58:479–491CrossRefGoogle Scholar
  31. Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR, Schindler DW, Quinn FH (1997) Potential effects of climate changes on aquatic ecosystems: Laurentian Great Lakes and Precambrian Shield region. Hydrol Process 11:825–871CrossRefGoogle Scholar
  32. Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel AR, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in northern hemisphere. Science 289:1743–1746CrossRefGoogle Scholar
  33. Mazumder A, Taylor WD, McQueen DJ, Lean DRS (1990) Effects of fish and plankton on lake temperature and mixing depth. Science 247:312–315CrossRefGoogle Scholar
  34. Mills RB, Paterson AM, Blais JM, Lean DRS, Smol JP, Mierle G (2009) Factors influencing the achievement of steady state in mercury contamination among lakes and catchments of south-central Ontario. Can J Fish Aquat Sci 66:187–200CrossRefGoogle Scholar
  35. Moos MT, Laird KR, Cumming BF (2005) Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. J Paleolimnol 34:217–227CrossRefGoogle Scholar
  36. Ontario Ministry of the Environment (1983) Handbook of analytical methods for environmental samples, vol 1 and 2. Laboratory Services Branch, Ontario Ministry of the Environment and Energy, Sudbury, ONGoogle Scholar
  37. Paterson AM, Cumming BF, Smol JP, Blais JM, France R (1998) Assessment of the effects of logging, forest fires and drought on lakes in northwestern Ontario: a 30-year paleolimnological perspective. Can J For Res 28:1546–1556CrossRefGoogle Scholar
  38. Paterson AM, Cumming BF, Smol JP, Blais JM, France R (2000) A paleolimnological assessment of the effects of logging on two lakes in northwestern Ontario, Canada. Verh Internat Verein Limnol 27:1214–1219Google Scholar
  39. Paterson AM, Morimoto DS, Cumming BF, Smol JP, Szeicz JM (2002) A paleolimnological investigation of the effects of forest fire on lake water quality in northwestern Ontario over the past ca. 150 years. Can J Bot 80:1329–1336CrossRefGoogle Scholar
  40. Rühland K, Smol JP (2005) Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Paleogeogr, Paleoclimatol, Palaeoecol 226:1–16CrossRefGoogle Scholar
  41. Rühland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 Lakes across Canadian Arctic Treeline. Arct Antarct Alp Res 35:110–123CrossRefGoogle Scholar
  42. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related increases in planktonic diatoms from North American and European lakes. Glob Change Biol. doi: 10.1111/j.1365-2486.2008.01670.x
  43. Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29CrossRefGoogle Scholar
  44. Schindler DW, Beaty KG, Fee EJ, Cruikshank DR, DeBruyn ED, Findlay DL, Linsey GA, Shearer JA, Stainton MP, Turner MA (1990) Effects of climatic warming on lakes of the central boreal forest. Science 250:967–970CrossRefGoogle Scholar
  45. Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, Schindler EU, Stainton MP (1996) The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41:1004–1017CrossRefGoogle Scholar
  46. Smol JP (2008) Pollution of Lakes and Rivers: a paleoenvironmental perspective, vol 2. Oxford University Press, New York, USAGoogle Scholar
  47. Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011CrossRefGoogle Scholar
  48. Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. PNAS 104:12395–12397CrossRefGoogle Scholar
  49. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102:4397–4402CrossRefGoogle Scholar
  50. Snucins E, Gunn J (2000) Interannual variation in thermal structure of clean and colored lakes. Limnol Oceanogr 45:1639–1646CrossRefGoogle Scholar
  51. Sorvari S, Korhola A (1998) Recent diatom assemblage change in subarctic Lake Saanajärvi, NW Finland Lapland. J Paleolimnol 20:205–215CrossRefGoogle Scholar
  52. Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181. doi: 10.1046/j.1365-2486.2002.00463.x CrossRefGoogle Scholar
  53. St. George S, Meko DM, Evans MN (2008) Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada since AD 1783. Quat Res 70:158–173CrossRefGoogle Scholar
  54. Tanaka H (2007) Taxonomic studies of the genera Cyclotella (Kützing) Brébisson, Discostella Houk et Klee and Puncticulata Håkansson in the family Sephanodiscaceae Glezer et Makarova (Bacillariophyta) in Japan. Bibl Diatomol 53. Stuttgart, Germany, pp 205Google Scholar
  55. ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for windows: software for Canonical community ordination (version 4). Microcomputer Power, Ithaca, USA, p 352Google Scholar
  56. Winder M, Schindler DE (2004) Climatic effects on the penology of lake processes. Glob Change Biol 10:1844–1856. doi: 10.1111/j.1365-2486.2004.00849.x CrossRefGoogle Scholar
  57. Winder M, Reuter JE, Schladow SG (2008) Lake warming favours small-sized planktonic diatom species. Proc R Soc Lond B Biol Sci. doi: 10.1098/rspb.2008.1200
  58. Wolfe AM, Baron JS, Cornett J (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7CrossRefGoogle Scholar
  59. Xenopoulos MA, Schindler DW (2001) The environmental control of near-surface thermoclines in boreal lakes. Ecosystems 4:699–707CrossRefGoogle Scholar
  60. Yan ND, Paterson AM, Somers KM, Scheider WA (2008) Introduction to the Dorset special issue: transforming understanding of the factors that regulate aquatic ecosystems on the southern Canadian Shield. Can J Fish Aquat Sci 65:781–785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mihaela D. Enache
    • 1
    • 3
  • Andrew M. Paterson
    • 2
  • Brian F. Cumming
    • 1
  1. 1.Department of Biology, Paleoecological Environmental Assessment and Research Laboratory (PEARL)Queen’s UniversityKingstonCanada
  2. 2.Ontario Ministry of the Environment, Dorset Environmental Science CentreDorsetCanada
  3. 3.The Academy of Natural SciencesPatrick Center for Environmental ResearchPhiladelphiaUSA

Personalised recommendations