Journal of Paleolimnology

, Volume 45, Issue 2, pp 273–285

Late Holocene Adélie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica

Original paper

Abstract

We inferred late Holocene Adélie penguin occupation history and population dynamics on Zolotov Island, Vestfold Hills, Antarctica, using geochemical data from a dated ornithogenic sediment core (ZOL4). Radiocarbon dates on fossil penguin bones in the core indicate that Adélie penguins occupied the island as early as 1,800 years before present (yr BP), following the retreat of the Sørsdal glacier. This occupation began ~1,200 years later than that observed at Ardley Island and King George Island, in the South Shetland Islands. Phosphorus was identified as the most indicative bio-element for penguin guano in core ZOL4, and was used to infer past penguin population dynamics. Around 1,800 years ago, the Adélie penguin populations at both Zolotov Island and Ardley Island increased rapidly and reached their highest levels ~1,000 yr BP. For the past ~900 years, the penguin populations at Zolotov Island have shown a general rising trend, with fluctuations, while those at Ardley Island have shown a moderate decreasing trend. The Adélie penguin populations at both Ardley Island and Zolotov Island showed a clear decline ~300 years ago, which we interpret as a response to the Little Ice Age, or a neoglacial cooling event.

Keywords

Adélie penguin Antarctic climates Ice core Ornithogenic sediments Western Antarctic Peninsula Little Ice Age 

References

  1. Adamson DA, Pickard J (1986) Cainozoic history of the Vestfold Hills. In: Pickard J (ed) Antarctic Oasis. Academic Press, Sydney, pp 63–97Google Scholar
  2. Ainley DG (2002) The Adélie penguin: bellwether of climate change. Columbia University Press, New YorkGoogle Scholar
  3. Ancora S, Volpi V, Olmastroni S, Focardi S, Leonzio C (2002) Assumption and elimination of trace elements in Adelie penguins from Antarctica: a preliminary study. Mar Environ Res 54:341–344CrossRefGoogle Scholar
  4. Arrigo KR, van Dijken GL, Ainley DG, Fahnestock MA, Markus T (2002) Ecological impact of a large Antarctic iceberg. Geophys Res Lett 29(7):1104. doi:10.1029/2001GL014160 CrossRefGoogle Scholar
  5. Baroni C, Orombelli G (1994) Abandoned penguin rookeries as holocene paleoclimatic indicators in Antarctica. Geology 22:23–26CrossRefGoogle Scholar
  6. Bentley MJ, Hodgson DA, Smith JA, Cofaigh CO, Domack EW, Larter RD, Roberts SJ, Brachfeld S, Leventer A, Hjort C, Hillenbrand CD, Evans J (2009) Mechanisms of holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene 19:51–69CrossRefGoogle Scholar
  7. Blais JM, Kimpe LE, McMahon D, Keatley BE, Mattory ML, Douglas MSV, Smol JP (2005) Arctic seabirds transport marine-derived contaminants. Science 309:445–445CrossRefGoogle Scholar
  8. Blais JM, Macdonald RW, Mackay D, Webster E, Harvey C, Smol JP (2007) Biologically mediated transport of contaminants to aquatic ecosystems. Environ Sci Technol 41:1075–1084CrossRefGoogle Scholar
  9. Bricher PK, Lucieer A, Woehler EJ (2008) Population trends of Adelie penguin (Pygoscelis adeliae) breeding colonies: a spatial analysis of the effects of snow accumulation and human activities. Polar Biol 31:1397–1407CrossRefGoogle Scholar
  10. Brimble SK, Blais JM, Kimpe LE, Mallory ML, Keatley BE, Douglas MSV, Smol JP (2009) Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Can J Fish Aquat Sci 66:949–958CrossRefGoogle Scholar
  11. Bronge C (1992) Holocene climatic record from lacustrine sediments in a freshwater lake in the Vestfold Hills, Antarctica. Geogr Ann 74:47–58CrossRefGoogle Scholar
  12. Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514CrossRefGoogle Scholar
  13. Domack EW, Ishman SE, Stein AB, McClennen CE, Jull AT (1995) Late holocene advance of the Müller Ice Shelf, Antarctic Peninsula: sedimentological, geochemical and palaeontological evidence. Antarct Sci 7:159–170CrossRefGoogle Scholar
  14. Domack EW, Leventer A, Root S, Ring J, Williams E, Carlson D, Hirshorn E, Wright W, Gilbert R, Burr G (2003) Marine sedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula. In: Domack EW, Leventer A, Burnett A, Bindschadler R, Convey P, Kirby M (eds) Antarctic Peninsula climate variability: historical and paleoenvironmental perspectives. Antarctic Research Series 79, American Geophysical Union, pp 205–222Google Scholar
  15. Emslie SD, McDaniel JD (2002) Ade’lie penguin diet and climate change during the middle to late holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol 25:222–229Google Scholar
  16. Emslie SD, Berkman PA, Ainley DG, Coats L, Polito M (2003) Late-holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica. Mar Ecol-Prog Ser 262:19–25CrossRefGoogle Scholar
  17. Emslie SD, Coats L, Licht K (2007) A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 35:61–64CrossRefGoogle Scholar
  18. Forcada J, Trathan PN, Reid K, Murphy EJ, Croxall JP (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Change Biol 12:411–423CrossRefGoogle Scholar
  19. Fraser WR, Hofmann EE (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol-Prog Ser 265:1–15CrossRefGoogle Scholar
  20. Fraser WR, Trivelpiece WZ, Ainley DG, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to global warming? Polar Biol 11:525–531CrossRefGoogle Scholar
  21. Goldschmidt VM (1954) Geochemistry. The Clarendon Press, OxfordGoogle Scholar
  22. Grove JM (1988) The little ice age. Methuen, New YorkCrossRefGoogle Scholar
  23. Hodgson DA, Johnston NM (1997) Inferring seal populations from lake sediments. Nature 387:30–31CrossRefGoogle Scholar
  24. Hodgson DA, Vyverman W, Sabbe K (2001) Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarct Sci 13:255–270Google Scholar
  25. Hofstee EH, Balks MR, Petchey F, Campbell DI (2006) Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarct Sci 18:473–486CrossRefGoogle Scholar
  26. Huang T, Sun LG, Wang YH, Liu XD, Zhu RB (2009a) Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarct Sci 21:571–578CrossRefGoogle Scholar
  27. Huang T, Sun LG, Wang YH, Zhu RB (2009b) Penguin occupation in the Vestfold Hills. Antarct Sci 21:131–134CrossRefGoogle Scholar
  28. Hughen KA, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac FG, Manning SW, Bronk RC, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine04 marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1059–1086Google Scholar
  29. Jenouvrier S, Barbraud C, Weimerskirch H (2006) Sea ice affects the population dynamics of Adelie penguins in Terre Adelie. Polar Biol 29:413–423CrossRefGoogle Scholar
  30. Keatley B, Douglas M, Blais J, Mallory M, Smol J (2009) Impacts of seabird-derived nutrients on water quality and diatom assemblages from Cape Vera, Devon Island, Canadian High Arctic. Hydrobiologia 621:191–205CrossRefGoogle Scholar
  31. Lamb FF (1977) Climate: present, past and future. Vol. 2. Climatic history and the future. Methuen, LondonGoogle Scholar
  32. Leventer A, Domack EW, Ishman SE, Brachfield S, McClennen CE, Manley P (1996) Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geol Soc Am Bull 108:1626–1644CrossRefGoogle Scholar
  33. Li YS, Cole-Dai JH, Zhou LY (2009) Glaciochemical evidence in an East Antarctica ice core of a recent (AD 1450–1850) neoglacial episode. J Geophys Res 114:D08117. doi:10.1029/2008JD011091 CrossRefGoogle Scholar
  34. Liu XD, Sun LG, Xie ZQ, Yin XB, Wang YH (2005) A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments. Arct Antarct Alp Res 37:490–498CrossRefGoogle Scholar
  35. Liu XD, Zhao SP, Sun LG, Luo HH, Yin XB, Xie ZQ, Wang YH, Liu KX, Wu XH, Ding XF, Fu DP (2006) Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. J Paleolimnol 36:259–279CrossRefGoogle Scholar
  36. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  37. Masson V, Vimeux F, Jouzel J, Morgan V, Delmotte M, Ciais P, Hammer C, Johnsen S, Lipenkov VY, Mosley-Thompson E, Petit JR, Steig EJ, Stievenard M, Vaikmae R (2000) Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat Res 54:348–358CrossRefGoogle Scholar
  38. Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  39. McMinn A (2000) Late holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica. Antarct Sci 12:80–88CrossRefGoogle Scholar
  40. McMinn A, Heijnis H, Harle K, McOrist G (2001) Late-Holocene climatic change recorded in sediment cores from Ellis Fjord, eastern Antarctica. Holocene 11:291–300CrossRefGoogle Scholar
  41. Michelutti N, Blais JM, Mallory M, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP (2010) Trophic position influences the efficacy of seabirds as metal biovectors. Proc Natl Acad Sci 107:10543–10548CrossRefGoogle Scholar
  42. Milliken KT, Anderson JB, Wellner JS, Bohaty SM, Manley PL (2009) High-resolution holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geol Soc Am Bull 121:1711–1725CrossRefGoogle Scholar
  43. Morgan VI (1985) An oxygen isotope—climate record from the Law Dome, Antarctica. Clim Change 7:415–426CrossRefGoogle Scholar
  44. Roberts D, McMinn A (1999) A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. Holocene 9:401–408CrossRefGoogle Scholar
  45. Smith RC, Ainley D, Baker K, Domack E, Emslie S, Fraser B, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49:393–404CrossRefGoogle Scholar
  46. Steig EJ, Morse DL, Waddington ED, Stuiver M, Grootes PM, Mayewski PA, Whitlow SL, Twickler MS (2000) Wisconsinan and holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr Ann 82A:213–235CrossRefGoogle Scholar
  47. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB5.1.0. http://calib.qub.ac.uk/calib/download
  48. Sun LG, Xie ZQ (2001a) Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years. Environ Geol 40:1205–1208CrossRefGoogle Scholar
  49. Sun LG, Xie ZQ (2001b) Relics: penguin population programs. Sci Prog 84:31–44CrossRefGoogle Scholar
  50. Sun LG, Xie ZQ, Zhao JL (2000) Palaeoecology—a 3,000-year record of penguin populations. Nature 407:858–858CrossRefGoogle Scholar
  51. Sun LG, Liu XD, Yin XB, Zhu RB, Xie ZQ, Wang YH (2004a) A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biol 27:495–501CrossRefGoogle Scholar
  52. Sun LG, Zhu RB, Yin XB, Liu XD, Xie ZQ, Wang YH (2004b) A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biol 27:670–678CrossRefGoogle Scholar
  53. Sun LG, Zhu RB, Liu XD, Xie ZQ, Yin XB, Zhao SP, Wang YH (2005) HCI-soluble Sr-87/Sr-86 ratio in sediments impacted by penguin or seal excreta as a proxy for historical population size in the maritime Antarctic. Mar Ecol-Prog Ser 303:43–50CrossRefGoogle Scholar
  54. Tatur A, Keck A (1990) Phosphates in ornithogenic soils of the maritime Antarctic. Proc NIPR Symp Polar Biol 3:133–150Google Scholar
  55. Taylor F, McMinn A (2002) Late quaternary diatom assemblages from Prydz Bay, Eastern Antarctica. Quat Res 57:151–161CrossRefGoogle Scholar
  56. Verleyen E, Hodgson DA, Cremer H, Emslie SD, Gibson J, Hall B, i Imura S, Kudoh S, Marshall GJ, McMinn A, Melles M, Newman L, Roberts D, Roberts SJ, Sabbe K, Singh SM, Sterken M, Tavernier I, Verkulich S, Van de Vyver E, Van Nieuwenhuyze W, Wagner B, Vyverman W (2010) Post-glacial regional climate variability along the East Antarctic coastal margin—evidence from shallow marine and coastal terrestrial records. Earth Sci Rev. doi:10.1016/j.earscirev.2010.10.006
  57. Wang JJ, Wang YH, Wang XM, Sun LG (2007) Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2, 400 years. Polar Biol 30:1475–1481CrossRefGoogle Scholar
  58. Whitehead MD, Johnstone GW (1990) The distribution and estimated abundance of Adélie penguin breeding in Prydz Bay, Antarctica. Proc NIPR Symp Polar Biol 3:91–98Google Scholar
  59. Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G, Comiso JC (2001) Adelie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic circumpolar current. Mar Ecol-Prog Ser 213:301–309CrossRefGoogle Scholar
  60. Woehler EJ, Cooper J, Croxall JP, Fraser WR, Kooyman GL, Miller GD, Nel DC, Patterson DL, Peter HU, Ribic CA, Salwicka K, Trivelpiece WZ, Weimerskirch H (2001) A statistical assessment of the status and trends of Antarctic and Subantarctic seabirds. Scientific Comm Antarct Res, HobartGoogle Scholar
  61. Xie ZQ, Sun LG (2008) A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environ Geol 55:1055–1059CrossRefGoogle Scholar
  62. Yang QC, Sun LG, Kong DM, Huang T, Wang YH (2010) Variation of Antarctic seal population in response to human activities in 20th century. Chin Sci Bull 55:1084–1087Google Scholar
  63. Yin XB, Xia LJ, Sun LG, Luo HH, Wang YH (2008) Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. Sci Total Environ 399:179–185CrossRefGoogle Scholar
  64. Yoo KC, Yoon HI, Kim JK, Khim BK (2009) Sedimentological, geochemical and palaeontological evidence for a neoglacial cold event during the late holocene in the continental shelf of the northern South Shetland Islands, West Antarctica. Polar Res 28:177–192CrossRefGoogle Scholar
  65. Zdanowski MK, Zmuda MJ, Zwolska W (2005) Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol Biochem 37:581–595CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tao Huang
    • 1
  • Liguang Sun
    • 1
  • Yuhong Wang
    • 1
    • 2
  • Deming Kong
    • 1
  1. 1.Institute of Polar EnvironmentUniversity of Science and Technology of ChinaHefeiChina
  2. 2.National Institutes of HealthBethesdaUSA

Personalised recommendations