Advertisement

Journal of Paleolimnology

, Volume 45, Issue 2, pp 183–197 | Cite as

Hydrological change in the central interior of British Columbia, Canada: diatom and pollen evidence of millennial-to-centennial scale change over the Holocene

  • Jennifer M. Galloway
  • Adam M. Lenny
  • Brian F. Cumming
Original paper

Abstract

Diatom-based inferences of post-glacial hydrological change from a sedimentary record from Felker Lake, British Columbia, show millennial-scale pacing of climate over the past approximately 11670 calendar years with change at ca. 8140 cal. year BP, ca. 6840 cal. year BP, ca. 5700 cal. year BP, and ca. 2230 cal. year BP. Early postglacial diatom assemblages are dominated by fragilaroid taxa, suggesting that cool and moist climate conditions and relatively high lake levels prevailed at this time. Early Holocene warming near ca. 8140 cal. year BP promoted Cyclotella bodanica var. lemanica, a fall bloomer competitive in limnological conditions associated with warmer water and stratified conditions. Short-lived peaks of Stephanodiscus parvus/minutulus between ca. 6340 cal. year BP and ca. 5860 cal. year BP indicate periodic increases in nutrient availability and prolonged mixing likely associated with long cool and moist spring seasons. The diatom-inferred depth of Felker Lake increased during the mid-Holocene to reach a record high-stand at ca. 5860 cal. year BP. Large changes in hydrological variability and terrestrial vegetation at Felker Lake occurred after ca. 2230 cal. year BP when high-amplitude centennial-scale fluctuations in diatom-inferred lake depth and salinity are observed. Change is first documented in terrestrial vegetation at this time by a shift from open Pinus parklands to a landscape that periodically supported populations of Cupressaceae. Three record low-stand high-salinity events are reconstructed between ca. 1910 cal. year BP and ca. 1800 cal. year BP, ca. 1030 cal. year BP and ca. 690 cal. year BP, and ca. 250 cal. year BP and ca. 140 cal. year BP. The low lake-level episode of ca. 1030 cal. year BP–ca. 690 cal. year BP is coeval with the Medieval Warm Period (ca. 1000 cal. year BP–ca. 600 cal. year BP), a period of intense drought in western North America. Post-glacial hydrological change at Felker Lake is coherent with regional, hemispherical, and global paleoclimate events, suggesting that millennial-and centennial-scale shifts in water availability are a persistent feature of the climate of western North America.

Keywords

Paleoecology Diatoms Pollen Holocene Climate change British Columbia 

Notes

Acknowledgments

We are grateful for field assistance from Jeremy Gallant and Mihaela Enache, and would like to thank Dr. P Roeder (Queen’s University) for identifying tephra layers in the Felker Lake sediment core. Funding for this research was provided by a grant from the National Sciences and Engineering Research Council of Canada awarded to BF Cumming. The comments and suggestions of Rod Smith and two anonymous reviewers greatly improved the manuscript. This manuscript represents Natural Resources Canada Earth Science Sector (Geological Survey of Canada) contribution number 20090370.

References

  1. Anderson C, Koç N, Moros M (2004) A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms. Quat Sci Rev 23:2155–2166CrossRefGoogle Scholar
  2. Anderson L, Abbott MB, Finney BP, Burns SJ (2005) Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat Res 64:21–35CrossRefGoogle Scholar
  3. Bassett JI, Crompton CW, Parmelee JA (1978) An atlas of airborne pollen grains and common fungus spores of Canada. Canada Research Branch, Canada Department of Agriculture Monograph No. 18Google Scholar
  4. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments volume 3: terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202Google Scholar
  5. Baumeister D, Callaway RM (2006) Facilitation by Pinus flexis during succession: a hierarchy of mechanisms benefits other plant species. Ecology 87:1816–1830CrossRefGoogle Scholar
  6. Bennett JR, Cumming BF, Leavitt PR, Chiu M, Smol JP, Szeicz J (2001) Diatom, pollen, and chemical evidence of postglacial climatic change at Big Lake, south-central British Columbia, Canada. Quat Res 55:332–343CrossRefGoogle Scholar
  7. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  8. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos Trans R Soc London B Biol Sci 327:263–278CrossRefGoogle Scholar
  9. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers S, Hoffman S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  10. Bracht BB, Stone JR, Fritz SC (2007) A diatom record of late Holocene climate variation in the northern range of Yellowstone National Park, USA. Quat Int 188:149–155CrossRefGoogle Scholar
  11. Brown TA, Nelson DE, Mathewes RW, Vogel JS, Southon JR (1989) Radiocarbon dating of pollen by accelerator mass spectrometry. Quat Res 32:205–212CrossRefGoogle Scholar
  12. Chase MC, Bleskie C, Walker IR, Gavin DG, Hu FS (2008) Midge-inferred Holocene summer temperatures in southeastern British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 257:244–259CrossRefGoogle Scholar
  13. Christoforou P, Hameed S (1997) Solar cycle and Pacific ‘centers of action’. Geophys Res Lett 24:293–296CrossRefGoogle Scholar
  14. Clague JJ, Evans SG, Rampton VN, Woodsworth GJ (1995) Improved age estimates for the White River and Bridge River tephras, western Canada. Can J Earth Sci 32:1172–1179CrossRefGoogle Scholar
  15. Cumming BF, Wilson SE, Hall RI, Smol JP (1995) Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica, J. Cramer, StuttgartGoogle Scholar
  16. Cumming BF, Laird KR, Bennett JR, Smol JP, Salomon AK (2002) Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia. Proc Nat Acad Sci USA 99:16117–16121CrossRefGoogle Scholar
  17. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  18. Dean WE (1997) Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: evidence from varved lake sediments. Geology 25:331–334CrossRefGoogle Scholar
  19. Dean WE, Ahlbrandt TS, Anderson RY, Bradbury JP (1996) Regional aridity in North America during the middle Holocene. Holocene 6:145–155CrossRefGoogle Scholar
  20. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th Edition by Fægri I, Kaland PE and Krzywinski K. The Blackburn Press, New JerseyGoogle Scholar
  21. Fritz SC, Juggins S, Batterbee RW, Engstrom DR (1991) Reconstruction of past changes in salinity and climate using a diatom based transfer function. Nature 352:706–708CrossRefGoogle Scholar
  22. Garcia D, Zamora R, Hódar JA, Gómez JM (1998) Age structure of Juniperus communis L in the Iberian Peninsula: conservation of remnant populations of Mediterranean mountains. Biol Conserv 87:215–220CrossRefGoogle Scholar
  23. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  24. Grimm EC (1993) “TILIA v2.0 (computer software)”. Illinois State Museum, Research and Collections Center. Springfield, IllinoisGoogle Scholar
  25. Habeck RJ (1992) Pinus ponderosa var. ponderosa. In: Fire Effects Information System. US Department of agriculture, forest service, rocky mountain research station, fire sciences laboratory. http://www.fs.fed.us/database/feis/ (updated July 7, 2009)
  26. Hallett DJ, Hills LV (2006) Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay Valley, southeastern British Columbia, Canada. J Paleolimnol 35:351–371CrossRefGoogle Scholar
  27. Hallett DJ, Hills LV, Clague JJ (1997) New accelerator mass spectrometry radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Can J Earth Sci 34:1202–1209CrossRefGoogle Scholar
  28. Hallett DJ, Mathewes RW, Walker RC (2003) A 1000-year record of forest fire, drought and lake-level change in southeastern British Columbia, Canada. Holocene 13:751–761CrossRefGoogle Scholar
  29. Hart S (2000) Phosphorus sources in upper Chimney Creek Basin. Prepared for pollution prevention, ministry of environment, lands and parks, Williams Lake. J.S. Hart and Associates Ltd, Tatla LakeGoogle Scholar
  30. Hebda RJ (1995) British Columbia vegetation and climate history with focus on 6 ka BP. Geogr Phys Quatern 49:55–79Google Scholar
  31. Hebda RJ, Allen GB (1993) Modern pollen spectra from west central British Columbia. Can J Bot 71:1486–1496Google Scholar
  32. Heinrichs ML, Wilson SE, Walker IR, Smol JP, Mathewes RW, Hall KJ (1997) Midge- and diatom-based paleosalinity reconstructions for Mahoney Lake, Okanagan Valley, British Columbia, Canada. Int J Salt Lake Res 6:249–267Google Scholar
  33. Heinrichs ML, Walker IR, Mathewes RW, Hebda RJ (1999) Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Geogr Phys Quatern 53:211–221Google Scholar
  34. Hope HD, Mitchell WR, Lloyd DA, Erickson WR, Harper WL, Wikeem BM (1991) Interior Douglas-fir Zone. In: Medinger D, Pojar J (eds) Ecosystems of British Columbia. Special report series 6, British Columbia Ministry of Forests, Victoria, British Columbia, pp 153–166Google Scholar
  35. Hunt JB, Cliff PD, Lacasse C, Vallier TL, Werner R (1998) Interlaboratory comparison of electron probe analysis of glass geochemistry. Proc Ocean Drill Prog Sci Results 152:85–91Google Scholar
  36. Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Postglacial record of diatom assemblage changes related to climate in an alpine lake in the northern Rocky Mountains, Canada. Can J Bot 83:968–982CrossRefGoogle Scholar
  37. Kilian MR, van der Plicht J, van Geel B, Goslar T (2002) Problematic 14C-AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quat Int 88:21–26CrossRefGoogle Scholar
  38. Laird KR, Cumming BF, Wunsam S, Rusak JA, Oglesby RJ, Fritz SC, Leavitt PR (2003) Lake sediments record large-scale shifts in moisture regimes across the prairies of North America during the past two millennia. Proc Nat Acad Sci USA 100:2438–2488CrossRefGoogle Scholar
  39. League V, Veblen T (2006) Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. For Ecol Manage 228:98–107CrossRefGoogle Scholar
  40. Lent RM, Lyons WB (2001) Biogeochemistry of silica in Devils Lake: implications for diatom preservation. J Paleolimnol 26:53–66CrossRefGoogle Scholar
  41. Lotter AF, Birks HJB, Zolitschka B (1995) Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. J Paleolimnol 14:23–47CrossRefGoogle Scholar
  42. Lowe DJ, Green JD, Northcote TG, Hall KJ (1997) Holocene fluctuations of a meromictic lake in southern British Columbia. Quat Res 48:100–113CrossRefGoogle Scholar
  43. MacDonald GM, Beukens RP, Kieser WE (1991) Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72:1150–1155CrossRefGoogle Scholar
  44. Mathewes, RW (1973) A palynological study of postglacial vegetation changes in the University Research Forest, southwestern British Columbia. Can J Bot 51: 2085–2103Google Scholar
  45. Mathewes RW, Heusser LE (1981) A 12 000 year palynological record of temperature and precipitation trends in southwestern British Columbia. Can J Bot 59:707–710CrossRefGoogle Scholar
  46. Mathewes RW, King M (1989) Holocene vegetation, climate, and lake-level changes in the Interior Douglas-fir biogeoclimatic zone, British Columbia. Can J Earth Sci 26:1811–1825Google Scholar
  47. Mathewes RW, Rouse GE (1975) Palynology and paleoecology of postglacial sediments from the Lower Fraser River Canyon of British Columbia. Can J Earth Sci 12:745–756Google Scholar
  48. McAndrews JH, Berti AA, Norris G (1973) Key to the quaternary pollen and spores of the Great Lakes Region. Royal Ontario Museum Life Sciences Miscellaneous Publication, TorontoGoogle Scholar
  49. Menounos B, Osborn G, Clague JJ, Luckman BH (2009) Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quat Sci Rev 28:2049–2074CrossRefGoogle Scholar
  50. Nesje A, Dahl SO, Lie Ø (2004) Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjørn, Jotunheimen, central southern Norway. Quat Sci Rev 23:2183–2205CrossRefGoogle Scholar
  51. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramssey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  52. Ryker RA, Losensky J (1983) Ponderosa pine and Rocky Mountain Douglas-fir. In: Bruns RM (technical complier) Silvicultural systems for the major forest types of the United Sates. Agricultural Handbook 445. United States Department of Agriculture Forest Service, Washington, pp 53–55Google Scholar
  53. Sarnthein M, van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75ºN. Boreas 32:447–461CrossRefGoogle Scholar
  54. Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844Google Scholar
  55. Springer GS, Rowe HD, Hardt B, Edwards RL, Cheng H (2008) Solar forcing of Holocene droughts in a stalagmite record from West Virginia in East-Central North America. Geophys Res Lett 35:L17703. doi: 10.1029/2008GL034971 CrossRefGoogle Scholar
  56. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  57. Stuiver M, Braziunas TF (1989) Atmospheric 14C and century-scale solar oscillations. Nature 338:405–408CrossRefGoogle Scholar
  58. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 6.0. (www program and documentation; http//calib.qub.ac.uk/calib/maual/)
  59. Wilson SE, Cumming BF, Smol JP (1996) Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can J Fish Aquat Sci 53:1580–1594CrossRefGoogle Scholar
  60. Winder M, Reuter JE, Schladow GS (2008) Lake warming favours small-sized planktic diatom species. Pro R Soc London Ser B 276:427–435CrossRefGoogle Scholar
  61. Yu Z, Ito E (1999) Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27:263–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jennifer M. Galloway
    • 1
    • 2
  • Adam M. Lenny
    • 1
  • Brian F. Cumming
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Biosciences ComplexQueen’s UniversityKingstonCanada
  2. 2.Geological Survey of Canada (Calgary)Natural Resources CanadaCalgaryCanada

Personalised recommendations