Advertisement

Journal of Paleolimnology

, Volume 45, Issue 1, pp 85–99 | Cite as

Middle to late Holocene initiation of the annual flood pulse in Tonle Sap Lake, Cambodia

  • Mary Beth Day
  • David A. Hodell
  • Mark Brenner
  • Jason H. Curtis
  • George D. Kamenov
  • Thomas P. Guilderson
  • Larry C. Peterson
  • William F. Kenney
  • Alan L. Kolata
Original paper

Abstract

Tonle Sap Lake, Cambodia, possesses one of the most productive inland fisheries in the world and is a vital natural resource for the country. The lake is connected to the Mekong River via the Tonle Sap River. Flow in the Tonle Sap River reverses seasonally, with water exiting the lake in the dry season and entering the lake during the summer monsoon. This flood pulse drives the lake’s biological productivity. We used Sr, Nd, and Pb isotopes and elemental concentrations in lake sediment cores to track changes in the provenance of deposits in Tonle Sap Lake. We sought to determine when the lake first began to receive water and sediment input via the Mekong River, which initiated flood pulse processes. The transition from a non-pulsing lake to the Mekong-connected system is marked by shifts to values of 87Sr/86Sr, εNd, and 207Pb/204Pb that are characteristic of Mekong River sediments. In addition, magnetic susceptibility increased and sediment elemental composition changed. Elemental (P) measures point to enhanced phosphorus loading and C/N and isotope ratios of bulk organic matter indicate a shift to greater relative contribution of organic material from aquatic versus terrestrial environments, coinciding with the initiation of flood pulse processes. On the basis of radiocarbon dating in two cores, we estimate the initiation of the annual flood pulse occurred between ~4,450 and 3,910 cal year BP.

Keywords

Tonle Sap Lake Flood pulse Mekong River Cambodia Radiogenic isotopes 

Notes

Acknowledgments

This work was supported, in part, by research funds provided by the Marion and Adolph Lichtstern Fund and the Neukom Family Distinguished Service Professorship held by ALK. Additional support to MBD was provided by the Gates Cambridge Trust and a University of Florida Alumni Fellowship. Radiocarbon analyses for core TS-18-XII-03 were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Radiocarbon analyses for core CHH-17-XII-03 were funded by NERC Radiocarbon Analysis Allocation Number 1452.1009. Many thanks to Simon Crowhurst, Gianna Browne and Jaime Escobar for their enthusiastic assistance in the lab. This work was completed under authorization from the Ministry of the Environment of the Kingdom of Cambodia and with permission of the Director of the APSARA Authority. We greatly appreciate logistical support provided by the Center for Khmer Studies, particularly former executive director Dr. Philippe Peycam. Thanks also to Laurent Holdener, Jake Janisa, Yi Sokpol, KotYi Ney, Meas Uon, Heng Poy, and Kun Ny for their help in the field. Finally, we would like to acknowledge two anonymous reviewers for their helpful comments on the manuscript.

Supplementary material

10933_2010_9482_MOESM1_ESM.doc (106 kb)
Supplementary material 1 (DOC 106 kb)

References

  1. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  2. Baran E (2005) Cambodian inland fisheries: facts, figures and context. World Fish Center, Penang 49 ppGoogle Scholar
  3. Bayley PB (1991) The flood pulse advantage and the restoration of river-floodplain systems. Regul River 6:75–86CrossRefGoogle Scholar
  4. Campbell IC, Poole C, Giesen W, Valbo-Jorgensen J (2006) Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquat Sci 68:355–373CrossRefGoogle Scholar
  5. Carbonnel JP (1963) Vitesse d’accumulation des sédiments récents du Grand Lac du Cambodge, d’après le carbone 14. Corrélations stratigraphique et morphotectonique: C R Acad Sci 257:2514–2516Google Scholar
  6. Carbonnel JP, Guiscafré J (1965) Grand Lac du Cambodge: Sedimentologie et hydrologie, 1962–1963. Muséum National d’Histoire Naturelle de Paris, ParisGoogle Scholar
  7. Cullen HM, deMenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–382CrossRefGoogle Scholar
  8. Deevey ES, Stuiver M (1964) Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol Oceanogr 9:1–11CrossRefGoogle Scholar
  9. Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolutely-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86CrossRefGoogle Scholar
  10. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle Radar Topography Mission, Rev Geophys 45. doi: 10.1029/2005RG000183
  11. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  12. Furch K, Junk WJ (1992) Nutrient dynamics of submersed decomposing Amazonian herbaceous plant species Paspalum fasciculatum and Echinochloa polystachya. Rev Hydrobiol Trop 25:75–85Google Scholar
  13. Furch K, Junk WJ (1997) Physicochemical conditions in the floodplains. In: Junk WJ (ed) Ecological studies, volume 126, The Central Amazon Floodplain: ecology of a pulsing system. Springer, New York, pp 69–108Google Scholar
  14. Guilderson TP, Southon JR, Brown TA (2003) High-precision AMS 14C results on TIRI/FIRI turbidite. Radiocarbon 45:75–80Google Scholar
  15. Hong YT, Hong B, Lin QH, Shibata Y, Hirota M, Zhu YX, Leng XT, Wang Y, Wang H, Yi L (2005) Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Niño. Earth Planet Sci Lett 231:337–346CrossRefGoogle Scholar
  16. Hortle KG, Lieng S, Valbo-Jorgensen J (2004) An introduction to Cambodia’s inland fisheries. Mekong development series No. 4. Mekong River Commission, Phnom PenhGoogle Scholar
  17. Hu C, Henderson GM, Huang J, Xie S, Sun Y, Johnson KR (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett 266:221–232CrossRefGoogle Scholar
  18. Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches and applications—an update. In: Welcomme RL, Petr T (eds) Proceedings of the second international symposium on the management of large rivers for fisheries. RAP Publication, Bangkok, pp 117–140Google Scholar
  19. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic Science 106:110–127Google Scholar
  20. Kamenov GD, Brenner M, Tucker JL (2009) Anthropogenic vs natural control on trace element and Sr-Nd-Pb isotope record in peat sediments of southeast Florida, USA. Geochim Cosmochim Acta 73:3549–3567CrossRefGoogle Scholar
  21. Kenney WF, Schelske CL, Chapman AD (2001) Changes in polyphosphate sedimentation: a response to excessive phosphorus enrichment in a hypereutrophic lake. Can J Fish Aquat Sci 58:879–887CrossRefGoogle Scholar
  22. Keskinen M, Koponen J, Kummu M, Nikula J, Sarkkula J, Varis O (2005) Integration of socio-economic and hydrological information in the Tonle Sap Lake, Cambodia. In: Proceedings, international conference on simulation and modeling, BangkokGoogle Scholar
  23. Kummu M, Sarkkula J (2008) Impact of the Mekong River flow alteration on the Tonle Sap flood pulse. Ambio 37:185–192CrossRefGoogle Scholar
  24. Kummu M, Penny D, Sarkkula J, Koponen J (2008) Sediment: curse or blessing for Tonle Sap Lake? Ambio 37:158–163CrossRefGoogle Scholar
  25. Lamberts D (2001) Tonle Sap fisheries: a case study on floodplain gillnet fisheries. Asia-Pacific Fishery Commission, Food and Agriculture Organization of the United Nations, Bangkok, Thailand, 101 ppGoogle Scholar
  26. Lamberts D (2008) Little impact, much damage: The consequences of Mekong River flow alterations for the Tonle Sap ecosystem. In: Kummu M, Keskinen M, Varis O (eds) Modern myths of the Mekong. Water & Development Publications—Helsinki University of Technology, Helsinki, pp 3–18Google Scholar
  27. Lamberts D, Koponen J (2008) Flood pulse alterations and productivity of the Tonle Sap ecosystem: a model for impact assessment. Ambio 37:178–184CrossRefGoogle Scholar
  28. Liu Z, Colin C, Trentesaux A, Siani G, Frank N, Blamart D, Farid S (2005) Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quat Res 63:316–328CrossRefGoogle Scholar
  29. Liu Z, Colin C, Huang W, Phon Le K, Tong S, Chen Z, Trentesaux A (2007) Climatic and tectonic controls on weathering in South China and Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst 8. doi: 10.1029/2006GC001490
  30. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  31. Millot R, Allègre C-J, Gaillardet J, Roy S (2004) Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem Geol 203:75–90CrossRefGoogle Scholar
  32. MRCS/WUP-FIN (2003) Modelling Tonle Sap for environmental impact assessment and management support: Water Utilization Program—modelling of the flow regime and water quality of the Tonle Sap. Finnish Environmental Institute Helsinki, Finland, 110 ppGoogle Scholar
  33. Nagid EJ, Canfield DE, Hoyer MV (2001) Wind-induced increases in trophic state characteristics of a large (27 km2), shallow (1.5 m mean depth) Florida lake. Hydrobiologia 455:97–110CrossRefGoogle Scholar
  34. Nguyen VL, Ta TKO, Saito Y (2010) Early Holocene initiation of the Mekong River delta, Vietnam, and the response to Holocene sea-level changes detected from DT1 core analyses. Sediment Geol 230:146–155CrossRefGoogle Scholar
  35. Okawara M, Tsukawaki S (2002) Composition and provenance of clay minerals in the northern part of Lake Tonle Sap, Cambodia. J Geogr (Chigaku Zasshi) 111:341–359Google Scholar
  36. Penny D (2006) The Holocene history and development of the Tonle Sap, Cambodia. Quat Sci Rev 25:310–322CrossRefGoogle Scholar
  37. Penny D, Cook G, Im SS (2005) Long-term rates of sediment accumulation in the Tonle Sap, Cambodia: a threat to ecosystem health? J Paleolimnol 33:95–103CrossRefGoogle Scholar
  38. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  39. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10. doi: 10.1029/2008GC002332
  40. Sarkkula J, Baran E, Chheng P, Keskinen M, Koponen J, Kummu M (2004) Tonle Sap Pulsing System and fisheries productivity. Contribution to the XXIXe International Congress of Limnology (SIL 2004), Lahti, FinlandGoogle Scholar
  41. Schimanski A, Haase K, Stattegger K, Grootes PM (2001) Provenance of Holocene and recent sediments on the Vietnamese Shelf revealed by Sr and Nd isotopes and trace elements [abs.]. Eos (Transactions, American Geophysical Union), 82:OS42SA-0453Google Scholar
  42. Selvaraj K, Chen CTA, Lou J-Y (2007) Holocene East Asian monsoon variability: links to solar and tropical Pacific forcing. Geophys Res Lett 34. doi: 10.1029/2006GL028155
  43. Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30. doi: 10.1029/2002GL016822
  44. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  45. Tamura T, Saito Y, Sieng S, Ben B, Kong M, Sim I, Choup S, Akiba F (2009) Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quat Sci Rev 28:327–344CrossRefGoogle Scholar
  46. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8. doi: 10.1029/2006GC001393
  47. Tsukawaki S (1997) Lithological features of cored sediments from the northern part of Lake Tonle Sap, Cambodia. In: Dheeradilok P, Hinthong C, Chaodumrong P, Putthapiban P, Tansathien W, Utha-aroon C, Sattyarak N, Nuchanong T, Techawan S (eds) Proceedings of the international conference on stratigraphy and tectonic evolution of Southeast Asia and the South Pacific. Dept Min Res. Bangkok, Thailand, pp 232–239Google Scholar
  48. Wang L, Sarnthein M, Erlenkeuser H, Grootes PM, Grimalt JO, Pelejero C, Linck G (1999) Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophys Res Lett 26:2889–2892CrossRefGoogle Scholar
  49. Wantzen KM, Junk WJ, Rothhaupt K-O (2008) An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia 613:151–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mary Beth Day
    • 1
    • 7
  • David A. Hodell
    • 2
  • Mark Brenner
    • 3
  • Jason H. Curtis
    • 1
  • George D. Kamenov
    • 1
  • Thomas P. Guilderson
    • 4
  • Larry C. Peterson
    • 5
  • William F. Kenney
    • 3
  • Alan L. Kolata
    • 6
  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Godwin Laboratory for Palaeoclimate Research, Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Department of Geological Sciences and Land Use and Environmental Change InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Center for Accelerator Mass SpectrometryLawrence Livermore National LaboratoryLivermoreUSA
  5. 5.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  6. 6.Department of AnthropologyUniversity of ChicagoChicagoUSA
  7. 7.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations