Journal of Paleolimnology

, Volume 44, Issue 4, pp 903–911 | Cite as

Morphometric techniques allow environmental reconstructions from low-diversity continental ostracode assemblages

  • Thijs Van der Meeren
  • Dirk Verschuren
  • Emi Ito
  • Koen Martens
Original paper

Abstract

Quantification of intra-specific morphological variability of aquatic biota along environmental gradients can produce biological proxies that can be applied to paleoenvironmental reconstructions. This morphology-derived proxy information can be especially valuable when dealing with low-diversity fossil assemblages, i.e. in situations when paleoenvironmental inference based on species composition of the assemblage is less effective. We analyzed valve size and outline shape of the widespread and highly environmentally tolerant ostracode species Limnocythere inopinata collected in 15 lakes and ponds of Western Mongolia. We quantified shape variability among and within these living populations in relation to water chemistry and physical habitat variables. Our results indicate that: (1) a population’s mean valve outline is related to habitat type, (2) surface water temperature, the alkalinity to sulphate ratio, specific conductance and total phosphorus together explain a high portion of the variance in mean valve outline between populations, and (3) a quantitative model inferring the alkalinity to sulphate ratio from mean valve outline has an R² of 0.88 and RMSEP of 0.17. These results corroborate the hypothesis that high morphological variability in this ostracode species is due to both ecophenotypic variance and high clonal diversity associated with a mixed reproductive strategy (a combination of sexual and parthenogenetically reproducing lineages), and underline the value of morphometric techniques in paleoecology.

Keywords

Ostracoda Morphometric techniques Ecophenotypic variation Clonal ecology 

Notes

Acknowledgments

We thank Y. Khand (Mongolian Academy of Sciences) and S.N. Soninkhishig (National University of Mongolia) for invaluable support during fieldwork and J.E. Almendinger for assembling and processing the water chemistry data. Collection of the study material was supported by the National Science Foundation (NSF) under grants DEB-0316503 to Mark Edlund and James E. Almendinger (Science Museum of Minnesota). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. The research was funded by a PhD grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) to the first author. We also thank Mark Brenner, Finn Viehberg and one anonymous referee for helpful comments. This is contribution 10-06 of the Limnological Research Center of the University of Minnesota.

Supplementary material

10933_2010_9463_MOESM1_ESM.pdf (118 kb)
Illustration of morphometric outline variance (standardized for area) for the full set of included outlines and for three selected populations (a) all included outlines (fifteen populations, n = 149) (b) population d3 (c) population m2 (d) population s1. Thin black lines indicate individual valve outlines by thin plate splines algoritm (see Materials and methods), thicker red lines indicate the corresponding computed mean population shape. The selected populations represent extremes in the observed morphospace as identified by NMDS (cf. Fig. 1 manuscript) (PDF 119 kb)

References

  1. Babinot J-F, Carbonel P, Peypouquet J-P, Colin J-P, Tambereau Y (1991) Variations morphologiques et adaptations morphofonctionelles chez les ostracodes: signification environnementale. Geobios 13:135–145CrossRefGoogle Scholar
  2. Baltanás A, Geiger W (1998) Intraspecific morphological variability: morphometry of valve outlines. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 127–142Google Scholar
  3. Baltanás A, Alcorlo P, Danielopol DL (2002) Morphological disparity in populations with and without sexual reproduction: a case study in Eucypris virens (Crustacea, Ostracoda). Biol J Linn Soc 75:9–19CrossRefGoogle Scholar
  4. Baltanás A, Braunei W, Danielopol DL, Linhart J (2003) Morphometric methods for applied ostracodology: tools for outline analysis of nonmarine ostracodes. Paleontological Society Papers 9:101–117Google Scholar
  5. Benson RH (1976) The evolution of the ostracode Costa analyzed by “Theta-Rho” difference. Abh Natwiss Ver Hambg 18(19):127–139Google Scholar
  6. Bode SNS, Adolfsson S, Bautz ERD, Martins MJF, Schmit O, Vandekerkhove J, Mezquita F, Namiotko T, Rossetti G, Schön I, Butlin RK, Martens K (2010) Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 54:542–552CrossRefGoogle Scholar
  7. Brauneis W, Linhart J, Stracke A, Danielopol DL, Neubauer W, Baltanás A (2006) Morphomatica (Version 1.6.0) user manual/tutorial. Limnological Institute of the Austrian Academy of Sciences, Mondsee, AustriaGoogle Scholar
  8. Clarke KR, Gorley RN (2006) Primer v. 6: computer program and user manual/tutorial. Primer-E Ltd, Plymouth, p 190Google Scholar
  9. Danielopol DL, Ito E, Wansard G, Kamiya T, Cronin T, Baltanás A (2002) Techniques for collection and Study of Ostracoda. In: Holmes JA, Chivas AR (eds) The Ostracoda: Applications in Quaternary Research. The American Geophysical Union, Washington DC, pp 65–97Google Scholar
  10. Danielopol DL, Baltanás A, Namiotko T, Geiger W, Pichler M, Reina M, Roidmayr G (2008) Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies. Senckenb Lethaea 88:183–193CrossRefGoogle Scholar
  11. De Deckker P, Forester RM (1988) The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin JP, Peypouquet J-P (eds) Ostracoda in the Earth Sciences. Elsevier, New York, pp 175–199Google Scholar
  12. Geiger W, Otero M, Rossi V (1998) Clonal ecological diversity. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 243–256Google Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9 [downloaded at http://palaeo-electronica.org/2001_1/past/issue1_01.htm]
  14. Mezquita F, Roca JR, Reed JM, Wansard G (2005) Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeogr Palaeoclimatol Palaeoecol 225:93–117CrossRefGoogle Scholar
  15. Mischke S, Herzschuh U, Massmann G, Zhang C (2007) An ostracod-conductivity transfer function for Tibetan lakes. J Paleolimnol 38:509–524CrossRefGoogle Scholar
  16. Mischke S, Bößneck U, Diekmann B, Herzschuh U, Jin H, Kramer A, Wünnemann B, Zhang C (2010) Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China. J Paleolomnol 43:589–608CrossRefGoogle Scholar
  17. Reyment RA (1996) Some applications of geometric morphometrics to Ostracoda. In: Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) Advances in Morphometrics. Plenum Press, New York, pp 387–398Google Scholar
  18. Reyment RA, Bookstein FL (1993) Infraspecific variability in shape in Neobuntonia airella: an exposition of geometric morphometry. In: McKenzie KG, Jones PJ (eds) Ostracoda in the Earth and Life Sciences. AA Balkema, Rotterdam, pp 291–314Google Scholar
  19. Roberts HR, Holmes JA, Swan ARH (2002) Ecophenotypy in Limnocythere inopinata (Ostracoda) from the late Holocene of Kajemarum Oasis (north-eastern Nigeria). Palaeogeogr Palaeoclimatol Palaeoecol 185:41–52CrossRefGoogle Scholar
  20. Rohlf FJ (2001) Tpsdig, Program version 1.43. Department of Ecology and Evolution, State University of New York, Stony Brook (http://life.bio.sunysb.edu/morph/soft-dataacq.html)
  21. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USAGoogle Scholar
  22. Van der Meeren T, Almendinger JE, Ito E, Martens K (2010) The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641:253–273CrossRefGoogle Scholar
  23. Viehberg FA (2006) Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571:213–224CrossRefGoogle Scholar
  24. Yin Y, Geiger W, Martens K (1999) Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia 400:85–114CrossRefGoogle Scholar
  25. Yin Y, Li W, Yang X, Wang S, Li S, Xia W (2001) Morphological responses of Limnocythere inopinata (Ostracoda) to hydrochemical environment factors. Sci China Ser D 44:316–323CrossRefGoogle Scholar
  26. Zhang E, Shen J, Wang S, Yin Y, Zhu Y, Xia W (2004) Quantitative reconstruction of the paleosalinity at Qinghai Lake in the past 900 years. Chin Sci Bull 49:730–734Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Thijs Van der Meeren
    • 1
    • 2
  • Dirk Verschuren
    • 2
  • Emi Ito
    • 3
  • Koen Martens
    • 1
    • 2
  1. 1.Freshwater BiologyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Limnology Unit, Biology DepartmentGhent UniversityGhentBelgium
  3. 3.Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations