Journal of Paleolimnology

, Volume 44, Issue 4, pp 887–902 | Cite as

Southern hemispheric westerlies control the spatial distribution of modern sediments in Laguna Potrok Aike, Argentina

  • Stephanie Kastner
  • Christian Ohlendorf
  • Torsten Haberzettl
  • Andreas Lücke
  • Christoph Mayr
  • Nora I. Maidana
  • Frank Schäbitz
  • Bernd Zolitschka
Original paper


We studied the internal lake processes that control the spatial distribution and characteristics of modern sediments at the ICDP (International Continental Scientific Drilling Program) deep drilling site in Laguna Potrok Aike, southern Patagonia, Argentina. Sediment distribution patterns were investigated using a dense grid of 63 gravity cores taken throughout the lake basin and 40 additional shoreline samples. Analysis of the surficial sediment distribution points to distinct internal depositional dynamics induced by wind-driven lake internal currents. Distribution maps illustrate that the spatial characteristics of analysed variables are linked to high erosional wave activity. Persistent wave action and littoral erosion along all shores, especially the eastern shore, is caused by prevailing Southern Hemispheric Westerlies. Several sediment variables (grain size, benthic diatoms, total inorganic carbon and calcium) indicate re-suspension of littoral sediment followed by re-distribution to profundal accumulation areas near the eastern shore. Variations within the catchment influence sediment characteristics in the north-eastern bay. That area is characterized by different mineralogical and sedimentological conditions as well as greater accumulation of pollen, inorganic carbon and diatoms. These findings are related to the influence of episodic inflow into this bay. Spatial differences in stable isotope values throughout the lake suggest that ephemeral tributaries around the lake basin may also contribute to the detected spatial sediment variations.


Spatial sediment distribution Depositional dynamics Geochemistry Stable isotopes Microfossils Argentinean Patagonia 



We thank all the members of the SALSA and PASADO teams who helped during coring in 2005 and 2008. We thank Sabine Stahl, Benjamin Bünning, Yvonne Brönnimann, Melanie Roos and Jost Schumski for help with sampling, sample preparation and geochemical analyses at the GEOPOLAR laboratory, University of Bremen. We are grateful to Eva Hering (University of Cologne) for providing pollen data from her diploma thesis and Thomas Chwalek (University of Munich, LMU) for isotope data from his bachelor thesis. We are much obliged to Bernd Wagner and Martin Grosjean who conscientiously improved the manuscript with their critical reviews and suggestions. We are also grateful to Mark Brenner for his detailed editorial work. This is a contribution to the project ASADO (Analysis of Sediment Areal Distribution in Laguna Potrok Aike) founded by the German Research Foundation (DFG) within the ICDP priority program (ZO 102/8-1,2) which contributes to the ICDP deep drilling project PASADO.


  1. Anselmetti FS, Ariztegui D, De Batist M, Gebhardt AC, Haberzettl T, Niessen F, Ohlendorf C, Zolitschka B (2009) Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology 56:873–892CrossRefGoogle Scholar
  2. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York, pp 527–570Google Scholar
  3. Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124CrossRefGoogle Scholar
  4. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188CrossRefGoogle Scholar
  5. Beletsky D, Schwab DJ, Roebber PJ, McCormick MJ, Miller GS, Saylor JH (2003) Modelling wind-driven circulation during the March 1998 sediment resuspension event in Lake Michigan. J Geophys Res C Oceans 108(C2):3038–3051CrossRefGoogle Scholar
  6. Bennett JR (1974) Dynamics of wind-driven lake currents. J Phys Oceanogr 4:400–414CrossRefGoogle Scholar
  7. Boyle JF (2001) Inorganic geochemical methods in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments volume 2: physical and geochemical methods. Kluwer, Dordrecht, Boston, London, pp 83–142Google Scholar
  8. Bradbury JP, Winter TC (1976) Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology 57:1005–1014CrossRefGoogle Scholar
  9. Brooks GR, Doyle LJ, Davis RA, DeWitt NT, Suthard BC (2003) Patterns and controls of surface sediment distribution: west-central Florida inner shelf. Mar Geol 200:307–324CrossRefGoogle Scholar
  10. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University PressGoogle Scholar
  11. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis. Geological Society, London, pp 51–63Google Scholar
  12. D’Orazio M, Agostini S, Mazzarini F, Innocenti F, Manetti P, Haller MJ, Lahsen A (2000) The Pali Aike Volcanic Field, Patagonia: slab-window magmatism near the tip of South America. Tectonophysics 321:407–427CrossRefGoogle Scholar
  13. Dehnert A, Juschus O (2008) Rezente Sedimentation im El′gygytgyn-See, NE Sibirien, abgeleitet aus der Zusammensetzung von Oberflächensedimenten. Leipziger Geowissenschaften 19:35–51Google Scholar
  14. Dyck S, Peschke G (1995) Grundlagen der Hydrologie. Verlag für Bauwesen GmbH, BerlinGoogle Scholar
  15. Endlicher W (1993) Klimatische Aspekte der Weidedegradation in Ost-Patagonien. In: Hornetz B, Zimmer D (eds) Beiträge zur Kultur-und Regionalgeographie. Festschrift für Ralph Jätzold. Geographische Gesellschaft Trier, Trier, pp 91–103Google Scholar
  16. Engstrom DR, Wright HE (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 11–67Google Scholar
  17. Girardclos S, Baster I, Wildi W, Pugin A, Rachoud-Schneider AM (2003) Bottom-current and wind-pattern changes as indicated by Late Glacial and Holocene sediments from western Lake Geneva (Switzerland). Eclogae Geol Helv 96:39–48Google Scholar
  18. Haberzettl T (2006) Late Quaternary hydrological variability in southeastern Patagonia—45, 000 years of terrestrial evidence from Laguna Potrok Aike. Fachbereich 8. University Bremen, BremenGoogle Scholar
  19. Haberzettl T, Fey M, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302CrossRefGoogle Scholar
  20. Haberzettl T, Wille M, Fey M, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Zolitschka B (2006) Environmental change and fire history of southern Patagonia (Argentina) during the last five centuries. Quat Int 158:72–82CrossRefGoogle Scholar
  21. Haberzettl T, Corbella H, Fey M, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Wulf S, Zolitschka B (2007) Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310CrossRefGoogle Scholar
  22. Haberzettl T, Kück B, Wulf S, Anselmetti F, Ariztegui D, Corbella H, Fey M, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2008) Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 259:213–229CrossRefGoogle Scholar
  23. Haberzettl T, Anselmetti FS, Bowen SW, Fey M, Mayr C, Zolitschka B, Ariztegui D, Mauz B, Ohlendorf C, Kastner S, Lücke A, Schäbitz F, Wille M (2009) Late Pleistocene dust deposition in the Patagonian steppe—extending and refining the paleoenvironmental and tephrochronological record from Laguna Potrok Aike back to 55 ka. Quat Sci Rev 28:2927–2938CrossRefGoogle Scholar
  24. Håkanson L, Jansson M (1983) Lake sedimentology. Springer, Berlin, Heidelberg, New York, TorontoGoogle Scholar
  25. Hering E (2008) Die Pollensedimentation auf dem Seeboden der Laguna Potrok Aike, Südpatagonien (Argentinien). Seminar for Geography and Education. University of Cologne, CologneGoogle Scholar
  26. Hilton J, Gibbs MM (1984) The horizontal distribution of major elements and organic matter in the sediment of Esthwaite Water, England. Chem Geol 47:57Google Scholar
  27. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214CrossRefGoogle Scholar
  28. Imboden DM (2005) The motion of lake waters. In: O′Sullivan PE, Reynolds CS (eds) The lakes handbook—limnology and limnetic ecology. Blackwell, Oxford, pp 115–152Google Scholar
  29. Leng MJ, Lamb AL, Heaton THE, Marshall JD, Wolfe BB, Jones MD, Holmes JA, Arrowamith C (2006) Isotopes in lake sediments. In: Leng MJ (ed) Isotopes in Palaeoenvironmental research. Springer, Dordrecht, pp 147–184CrossRefGoogle Scholar
  30. Lou J, Schwab DJ, Beletsky D, Hawley N (2000) A model of sediment resuspension and transport dynamics in southern Lake Michigan. J Geophys Res C Oceans 105:6591–6610CrossRefGoogle Scholar
  31. Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI, Ohlendorf C, Schäbitz F, Schleser GH, Struck U, Wille M, Zolitschka B (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227CrossRefGoogle Scholar
  32. Mayr C, Wille M, Haberzettl T, Fey M, Janssen S, Lücke A, Ohlendorf C, Oliva G, Schäbitz F, Schleser GH, Zolitschka B (2007) Holocene variability of the Southern Hemisphere Westerlies in Argentinean Patagonia (52 degrees S). Quat Sci Rev 26:579–584CrossRefGoogle Scholar
  33. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16, 000 years. J Paleolimnol 42:81–102CrossRefGoogle Scholar
  34. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289CrossRefGoogle Scholar
  35. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments volume 2: physical and geochemical methods. Kluwer, Dordrecht, Boston, London, pp 239–269Google Scholar
  36. Naya T, Amano K, Okada M, Nakazato R, Kumon F, Nirei H (2005) Characteristics of bottom surface sediments in relation to wind and wave action in Lake Kitaura, central Japan. J Geol Soc Jpn 110:1–10Google Scholar
  37. Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. In: Schwerdtfeger W (ed) Climate of Central and South America. Elsevier, Amsterdam, pp 13–112Google Scholar
  38. Rea DK, Owen RM, Meyers PA (1981) Sedimentary processes in the Great-Lakes. Rev Geophys 19:635–648CrossRefGoogle Scholar
  39. Schaller T, Wehrli B (1996) Geochemical-focusing of manganese in lake sediments—an indicator of deep-water oxygen conditions. Aquat Geochem 2:359CrossRefGoogle Scholar
  40. Shulmeister J, Goodwin I, Renwick J, Harle K, Armand L, McGlone MS, Cook E, Dodson J, Hesse PP, Mayewski P, Curran M (2004) The Southern Hemisphere Westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quat Int 118–19:23–53CrossRefGoogle Scholar
  41. Sigg L, Stumm W (1996) Aquatische Chemie. Teubner, StuttgartGoogle Scholar
  42. Simons TJ (1985) Reliability of circulation models. J Phys Oceanogr 15:1191–1204CrossRefGoogle Scholar
  43. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  44. Vilas F, Bernabeu AM, Mendez G (2005) Sediment distribution pattern in the Rias Baixas (NW Spain): main facies and hydrodynamic dependence. J Mar Syst 54:261–276CrossRefGoogle Scholar
  45. Wagner S, Widmann M, Jones J, Haberzettl T, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Zolitschka B (2007) Transient simulations, empirical reconstructions and forcing mechanisms for the Mid-holocene hydrological climate in southern Patagonia. Clim Dyn 29:333–355CrossRefGoogle Scholar
  46. Wetzel RG (2001) Limnology—lake and river ecosystems. Academic Press, San DiegoGoogle Scholar
  47. Whitmore TJ, Brenner M, Schelske CL (1996) Highly variable sediment distribution in shallow wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J Paleolimnol 15:207–221CrossRefGoogle Scholar
  48. Wille M, Maidana NI, Schäbitz F, Fey M, Haberzettl T, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schleser GH, Zolitschka B (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246CrossRefGoogle Scholar
  49. Zolitschka B, Schäbitz F, Lücke A, Corbella H, Ercolano B, Fey M, Haberzettl T, Janssen S, Maidana NI, Mayr C, Ohlendorf C, Oliva G, Paez MM, Schleser GH, Soto J, Tiberi P, Wille M (2006) Crater lakes of the Pali Aike volcanic field as key sites for paleoclimate and paleoecological reconstruction in southern Patagonia, Argentina. J South Am Earth Sci 21:294–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Stephanie Kastner
    • 1
  • Christian Ohlendorf
    • 1
  • Torsten Haberzettl
    • 2
  • Andreas Lücke
    • 3
  • Christoph Mayr
    • 4
    • 5
  • Nora I. Maidana
    • 6
  • Frank Schäbitz
    • 7
  • Bernd Zolitschka
    • 1
  1. 1.Geomorphology and Polar Research (GEOPOLAR), Institute of GeographyUniversity of BremenBremenGermany
  2. 2.Physical Geography, Institute of GeographyFriedrich-Schiller-University JenaJenaGermany
  3. 3.Institute of Chemistry and Dynamics of the Geosphere 4, Agrosphere (ICG 4), Energy & Environment, Research Center JülichJülichGermany
  4. 4.Geo Bio-Center and Department of Earth & Environmental SciencesUniversity of MunichMunichGermany
  5. 5.Institute of GeographyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  6. 6.Department of Biodiversity and Experimental BiologyUniversity of Buenos Aires-CONICETBuenos AiresArgentina
  7. 7.Seminar for Geography and EducationUniversity of CologneCologneGermany

Personalised recommendations