Advertisement

Journal of Paleolimnology

, Volume 46, Issue 3, pp 387–404 | Cite as

Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record

  • Valentí Rull
  • Penélope González-Sampériz
  • Juan Pablo Corella
  • Mario Morellón
  • Santiago Giralt
Original paper

Abstract

We report vegetation changes of the last millennium inferred from palynological analysis of a sediment core from Lake Montcortès, situated at ~1,000 m elevation in the southern pre-Pyrenean flank. The record begins in the Middle Ages (~AD 800) and ends around AD1920, with an average resolution of ~30 years. The reconstructed vegetation sequence is complex and shows the influence of both climate and humans in shaping the landscape. Pre-feudal times were characterized by the presence of well-developed conifer forests, which were intensely burned at the beginning of feudal times (AD 1000) and were replaced by cereal (rye) and hemp cultivation, as well as meadows and pastures. In the thirteenth century, a relatively short period of warming, likely corresponding to the Medieval Warm Period, was inferred from the presence of a low Mediterranean scrub community that is today restricted to <800 m elevation. This community disappeared during Little Ice Age cooling in the fifteenth century, coinciding with a decline in human activities around the lake. Forest recovery began around AD 1500, at the beginning of the Modern period, coinciding with wetter climate. Forests, however, declined again during the seventeenth century, coinciding with maximum olive and hemp cultivation. This situation was reversed in post-Modern times (nineteenth century), characterized by an intense agricultural crisis and a significant decline in population that favored forest re-expansion. Correlations with nearby Estanya Lake, situated about 350 m below, provide a regional picture of environmental change. Besides some climate forcing evident in both sequences, human activities seem to have been the main drivers of landscape and vegetation change in the southern Pyrenean flank, in agreement with conclusions from other studies in high-mountain environments.

Keywords

Palynology Climatic change Human forcing Historical records Last millennium Pyrenees 

Notes

Acknowledgments

Financial support for this research was provided by the Spanish Ministry of Science and Technology, through the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067). Additional funding was provided by the Diputación General de Aragón (grant PM073/2007) and the Aragonese Regional Government–CAJA INMACULADA which partially funded the microfacies analysis at GFZ (Potsdam) by means of a travel grant. Juan Pablo Corella and Mario Morellón were supported by a PhD contract paid by the CONAI + D (Aragonese Scientific Council for Research and Development). Two anonymous referees contributed to improvement of the manuscript.

References

  1. Anderson RS, Homola RL, Davis RB, Jacobson GL (1984) Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Can J Bot 62:2325–2328CrossRefGoogle Scholar
  2. Andreu M (1981) La financiación de la industria naval en Barcelona (1745–1760). Pedralbes 1:267–294Google Scholar
  3. Argant J, López-Sáez JA, Binz P (2006) Exploring the ancient occupation of a high altitude site (Lake Lauzon, France): comparison between pollen and non-pollen Palynomorphs. Rev Palaeobot Palynol 141:151–163CrossRefGoogle Scholar
  4. Ávila A, Burrel JL, Domingo A, Fernández E, Godall J, Llopart M (1984) Limnología del Lago Grande de estanya (Huesca). Oecol Aquat 7:3–24Google Scholar
  5. Benito M, Sánchez de Dios R, Sainz H (2008) The evolution of the Pinus sylvestris L. area in the Iberian Peninsula from the last glacial maximum to 2100 under climate change. Holocene 18:705–714CrossRefGoogle Scholar
  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  7. Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 5–32Google Scholar
  8. Birks HJB, Birks HH (1980) Quaternary palaeoecology. E Arnold, LondonGoogle Scholar
  9. Brewer S, Cheddadi R, de Beaulieu JL, Reille M (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag 156:27–48CrossRefGoogle Scholar
  10. Bringué JM (2005) L’edat moderna. In: Marugan CM, Rapalino V (eds) Història del Pallars. Dels orígens als nostre dies. Pagès Editors, Lleida, pp 87–120Google Scholar
  11. Camps J, Gonzalvo I, Güell J, López P, Tejero A, Toldrà X, Vallespinós F, Vicens M (1976) El lago de Montcortès, descripción de un ciclo annual. Oecol Aquat 2:99–110Google Scholar
  12. Cañellas-Boltà N, Rull V, Vigo J, Mercadé A (2009) Modern pollen-vegetation relationships along an altitudinal transect of the Central Pyrenees (southwestern Europe). Holocene 19:1185–1200CrossRefGoogle Scholar
  13. Carreras J, Vigo J, Ferré A (2005–2006) Manual dels hàbitats de Catalunya, vols I-VIII. Dep Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona, SpainGoogle Scholar
  14. Carrión JS (2002) Patterns and processes of late quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2047–2066CrossRefGoogle Scholar
  15. Carrión JS, Willis KJ, Sánchez-Gómez P (2004) Holocene forest history of the eastern plateaux in the Segura Mountains (Murcia, southeastern Spain). Rev Palaeobot Palynol 132:219–236CrossRefGoogle Scholar
  16. Carrión JS, Fuentes N, González-Sampériz P, Sánchez-Quirante L, Finlayson JC, Fernández S, Andrade A (2007) Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quat Sci Rev 26:1455–1475CrossRefGoogle Scholar
  17. CBM (1991) CORINE biotopes manual. Habitats of the European Community. Comiss European Communities, LuxemburgGoogle Scholar
  18. Chiang C, Craft CB, Rogers DW, Richardson CJ (2000) Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquat Bot 68:61–78CrossRefGoogle Scholar
  19. Corella JP, Moreno A, Morellón M, Rull V, Giralt S, Rico MT, Pérez A, valero-Garcés B (2010) Climate and human impact on a meromictic lake during the last 6,000 years. J Paleolimnol. doi: 10.1007/s10933-010-9443-3
  20. de Bolòs O (2001) Vegetació dels Països Catalans. Aster, BarcelonaGoogle Scholar
  21. de Bolòs O, Vigo J, Masalles RM, Ninot JM (1990) Flora manual dels Països Catalans. Pòrtic, BarcelonaGoogle Scholar
  22. Delgado JM (1994) La indústria de la construcció naval catalana (1750–1850). Drassana 2:34–39Google Scholar
  23. Ejarque A, Julià R, Riera S, Palet JM, Orengo HA, Miras Y, Gascón C (2009) Tracing the history of highland human management in the eastern Pre-Pyrenees: an interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. Holocene 19:1241–1255CrossRefGoogle Scholar
  24. Esteban A (2003) La humanización de las altas cuencas de la Garona y las Nogueras (4,500 aC–1,955 aC). Org Aut Parques Nacionales. Min Medio Ambiente, MadridGoogle Scholar
  25. Farràs F (2005) El Pallars contemporani. In: Marugan CM, Rapalino V (eds) Història del Pallars. Dels orígens als nostre dies. Pagès Editors, Lleida, pp 121–144Google Scholar
  26. Folch R (1981) La vegetació dels Països Catalans. Ketres, BarcelonaGoogle Scholar
  27. Galop D (2001) La forêt, l’homme et le troupeau dans les Pyrénées. Géode-Laboratoire d’Ecologie Terrestre, Univ Toulouse-Le Mirail, ToulouseGoogle Scholar
  28. Godwin H (1967a) The ancient cultivation of hemp. Antiquity 41:42–49Google Scholar
  29. Godwin H (1967b) Pollen-analytic evidence for the cultivation of Cannabis in England. Rev Palaeobot Palynol 4:71–80CrossRefGoogle Scholar
  30. González-Sampériz P, Valero-Garcés B, Carrión JS (2004) Was the Ebro valley a refugium for temperate trees? Anal Biol 26:13–20Google Scholar
  31. González-Sampériz P, Valero-Garcés BL, Carrión JS, Pena-Monne JL, García-Ruiz JM, Martí-Bono C (2005) Glacial and Lateglacial vegetation in northeastern Spain: new data and a review. Quat Int 140–141:4–20CrossRefGoogle Scholar
  32. González-Sampériz P, Valero-Garcès BL, Moreno A, Jalut G, Garcίa-Ruiz JM, Martί-Bono C, Delgado-Huertas A, Navas A, Otto T, Deboub JJ (2006) Climate variability in the Spanish Pyrenees during the last 30, 000 yr revealed by the El Portalet sequence. Quat Res 66:38–52CrossRefGoogle Scholar
  33. Gutiérrez F, Calahorra J, Cardona F, Ortí F, Durán J, Garay P (2008) Geological and environmental implications of the evaporite karst in Spain. Environ Geol 53:951–965CrossRefGoogle Scholar
  34. Jalut G, Montserrat J, Fortugne M, Delibrias G, Vilaplana JM, Julià R (1992) Glacial to interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quat Sci Rev 11:449–480CrossRefGoogle Scholar
  35. Leroy SAG (2010) Pollen analysis of core DS7–1 (Dead Sea) showing intertwined effects of climatic change and human activities in the Late Holocene. J Archaeol Sci 37:306–316CrossRefGoogle Scholar
  36. Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and S-W Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34:2115–2128CrossRefGoogle Scholar
  37. Leroy SAG, Boyraz S, Gürbüz A (2009) High-resolution palynological analysis in Lake Sapanca as a tool to detect earthquakes on the North Anatolian Fault. Quat Sci Rev 28:2616–2632CrossRefGoogle Scholar
  38. López-Sáez JA, López-Merino L, Mateo MA, Serrano O, Pérez-Díaz S, Serrano L (2009) Palaeoecological potential of the marine organic deposits of Posidonia oceanica: a case study in the NE Iberian Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 271:215–224CrossRefGoogle Scholar
  39. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463CrossRefGoogle Scholar
  40. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  41. Marsan G, Utrilla P (1996) L’implantation du Mégalithisme dans les passages des Pyrénées centrales. Comparaison des vallées d’Ossau et Tena-Canfranc. Pyrénées Préhistoriques. Arts et Sociétés. CTHS, Paris, pp 521–532Google Scholar
  42. Marugan CM, Oliver J (2005) El Pallars medieval. In: Marugan CM, Rapalino V (eds) Història del Pallars. Dels orígens als nostre dies. Pagès Editors, Lleida, pp 45–86Google Scholar
  43. Marugan CM, Rapalino V (2005) Història del Pallars. Dels orígens als nostre dies. Pagès Editors, LleidaGoogle Scholar
  44. Mercuri AM, Accorsi CA, Bandini Mazzanti M (2002) The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veg Hist Archaeobot 11:263–276CrossRefGoogle Scholar
  45. Miras Y, Ejarque A, Riera S, Palet JM, Orengo H, Euba I (2007) Dynamique Holocène de la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancient, d’après l’analyse pollinique de la tourbière de Bosc dels Estanyons (2180 m, Vall de Madriu, Andorre). CR Paleovol 6:291–300CrossRefGoogle Scholar
  46. Modamio X, Perez V, Samarra F (1988) Limnología del lago de Montcortès (ciclo 1978–79). Oecol Aquat 9:9–17Google Scholar
  47. Montserrat J (1992) Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinològico. Monog Instit Pirenaico Ecología 6, 145 ppGoogle Scholar
  48. Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2009a) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol. doi: 10.1007/s10933-009-9346-3 Google Scholar
  49. Morellón M, Valero-Garcés B, Vegas-Vilarrúbia T, González-Sampériz P, Romero O, Delgado-Huertas A, Mata P, Moreno A, Rico M, Corella P (2009b) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: The Lake Estanya record (NE Spain). Quat Sci Rev 28:2582–2599CrossRefGoogle Scholar
  50. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall variability during the last 2,000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40:943–961CrossRefGoogle Scholar
  51. Muenscher WC (1980) Weeds. Cornell University Press, IthacaGoogle Scholar
  52. Pèlachs A, Pérez-Obiol R, Ninyerola M, Nadal J (2009a) Landscape dynamics of Abies and Fagus in the southern Pyrenees during the last 2,200 years as a result of anthropogenic impacts. Rev Palaeobot Palynol 156:337–349CrossRefGoogle Scholar
  53. Pèlachs A, Nadal J, Soriano JM, Molina D, Cunill R (2009b) Changes in the Pyrenean woodlands as a result of the intensity of human exploitation: 2, 000 years of metallurgy in Vallferrera, northeast Iberian Peninsula. Veg Hist Archaeobot. doi: 10.1007/s003344-009-0218-6 Google Scholar
  54. Reille M, Lowe JJ (1993) A re-evaluation of the vegetation history of the eastern Pyrenees (France) from the end of the last glacial to the present. Quat Sci Rev 12:47–77CrossRefGoogle Scholar
  55. Riera S, Wansard G, Julià R (2004) 2000-year environmental history of a karstic lake in the Mediterranean Pre-Pyrenees: the Estanya lakes (Spain). Catena 55:293–324CrossRefGoogle Scholar
  56. Riera S, López-Sáez JA, Julià R (2006) Lake responses to historical land use changes in northern Spain: the contribution of non-pollen palynomorphs in a multiproxy study. Rev Palaeobot Palynol 141:127–137CrossRefGoogle Scholar
  57. Rosell J (1994) Mapa Geológico de España y Memoria. Escala 1:50.000, Hoja de Tremp (252)Google Scholar
  58. Rull V (1987) A note on pollen counting in paleoecology. Pollen Spores 29:471–480Google Scholar
  59. Schofield JE, Waller MP (2005) A pollen analytical record for hemp retting from Dungeness Foreland, UK. J Archaeol Sci 32:715–726CrossRefGoogle Scholar
  60. Scott L (1992) Environmental implications and origin of micrsocopic Pseudoschizaea Thiegart and Franz ex Potonié emend in sediments. J Biogeogr 19:349–354CrossRefGoogle Scholar
  61. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for Medieval hydroclimate. Quat Sci Rev 26:2322–2336CrossRefGoogle Scholar
  62. Terhürne-Berson R, Th Litt, Cheddadi R (2004) The spread of Abies throughout Europe since the last glacial period. Veg Hist Archaeobot 13:257–268CrossRefGoogle Scholar
  63. van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the Late glacial type section at Usselo (the Netherlands). Rev Palaeobot Palynol 60:25–129CrossRefGoogle Scholar
  64. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen AG, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous Fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  65. Vigo J (1983) El poblament vegetal de la Vall de Ribes. I. Generalitats i catàleg florístic. Acta Bot Barcino 35:1–793Google Scholar
  66. Vigo J (1996) El poblament vegetal de la Vall de Ribes. Les comunitats vegetals i el paisatge. Inst Cartogr Catalunya, BarcelonaGoogle Scholar
  67. Vigo J (2008) L’alta muntanya catalana: Flora i vegetació. Institut d’Estudis Catalans-C Excurs Catalunya, BarcelonaGoogle Scholar
  68. Visset L, Aubert S, Belet JM, David F, Fortugne M, Galop D, Jalut G, Janssen CR, Voeltzel D, Huault MF (1996) France. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15, 000 years. Wiley, Chichester, pp 575–646Google Scholar
  69. Zhou M, Sharik TL, Jurgensen MF, Richter DL (1997) Ectomycorrhizal colonization of Quercus rubra seedlings in response to vegetation removals in oak and pine stands. For Ecol Manag 93:91–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Valentí Rull
    • 1
  • Penélope González-Sampériz
    • 2
  • Juan Pablo Corella
    • 2
  • Mario Morellón
    • 2
  • Santiago Giralt
    • 3
  1. 1.Institut Botànic de Barcelona (CSIC-ICUB)BarcelonaSpain
  2. 2.Instituto Pirenaico de Ecología (CSIC)ZaragozaSpain
  3. 3.Institut de Ciències de la Terra “Jaume Almera” (CSIC)BarcelonaSpain

Personalised recommendations