Journal of Paleolimnology

, Volume 46, Issue 3, pp 351–367 | Cite as

Climate and human impact on a meromictic lake during the last 6,000 years (Montcortès Lake, Central Pyrenees, Spain)

  • Juan Pablo CorellaEmail author
  • Ana Moreno
  • Mario Morellón
  • Valentí Rull
  • Santiago Giralt
  • María Teresa Rico
  • Ana Pérez-Sanz
  • Blas Lorenzo Valero-Garcés
Original paper


Sedimentological, mineralogical and compositional analyses performed on short gravity cores and long Kullenberg cores from meromictic Montcortès Lake (Pre-Pyrenean Range, NE Spain) reveal large depositional changes during the last 6,000 cal years. The limnological characteristics of this karstic lake, including its meromictic nature, relatively high surface area/depth ratio (surface area ~0.1 km2; z max = 30 m), and steep margins, facilitated deposition and preservation of finely laminated facies, punctuated by clastic layers corresponding to turbidite events. The robust age model is based on 17 AMS 14C dates. Slope instability caused large gravitational deposits during the middle Holocene, prior to 6 ka BP, and in the late Holocene, prior to 1,600 and 1,000 cal yr BP). Relatively shallower lake conditions prevailed during the middle Holocene (6,000–3,500 cal years BP). Afterwards, deeper environments dominated, with deposition of varves containing preserved calcite laminae. Increased carbonate production and lower clastic input occurred during the Iberian-Roman Period, the Little Ice Age, and the twentieth century. Although modulated by climate variability, changes in sediment delivery to the lake reflect modifications of agricultural practices and population pressure in the watershed. Two episodes of higher clastic input to the lake have been identified: 1) 690–1460 AD, coinciding with an increase in farming activity in the area and the Medieval Climate Anomaly, and 2) 1770–1950 AD, including the last phase of the Little Ice Age and the maximum human occupation in late nineteenth and early twentieth centuries.


Lake Montcortès Western Mediterranean Pyrenees Holocene Varves Human impact Little Ice Age 



Financial support for this research was provided by the Spanish CICYT, through the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067). Additional funding was provided by the Aragonese Regional Government–CAJA INMACULADA, which partially funded microfacies analysis at GFZ (Potsdam) through a travel grant. Juan Pablo Corella was supported by a PhD contract with CONAI+D (Aragonese Scientific Council for Research and Development), A. Moreno held a Ramón y Cajal programme post-doctoral contract, M. Rico a Juan de la Cierva contract from the Spanish Government and A. Pérez-Sanz a CONAI+D PhD fellowship. We are indebted to the GFZ and IPE-CSIC laboratory staffs for their collaboration in this research. We also thank Alberto Sáez and Clara Mangili for constructive criticisms of the earlier version of the manuscript.


  1. Anderson R, Dean W (1988) Lacustrine varve formation trough time. Palaeogeogr Palaeoclimatol Palaeoecol 62:215–235CrossRefGoogle Scholar
  2. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 yr based on cosmogenic nuclides. Tellus 52B:985–992Google Scholar
  3. Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet Sci Lett 166:85–95CrossRefGoogle Scholar
  4. Bar-Matthews M, Ayalon A, Gilmour MA, Matthews A, Hawkesworth CJ (2003) Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67:3181–3199CrossRefGoogle Scholar
  5. Barriendos M, Llasat MC (2003) The Case of the ‘Maldá’ Anomaly in the Western Mediterranean Basin (AD 1760–1800): an example of a strong climatic variability. Clim Chang 61:191–216CrossRefGoogle Scholar
  6. Benito G, Machado MJ, Pérez-González A (1996) Climate change and flood sensitivity in Spain. In: Branson J, Brown AG, Gregory KJ (eds) Global continental changes: the context of paleohydrology. The Geological Society of London, London, pp 85–98Google Scholar
  7. Benito G, Thorndycraft VR, Rico M, Sánchez-Moya Y, Sopeña A (2008) Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes. Geomorphology 101:68–77CrossRefGoogle Scholar
  8. Blanco E, Casado M, Costa M, Escribano R, García Antón M, Génova M, Gómez A, Moreno J, Morla C, Regato P, Sainz Ollero H (1997) Los Bosques Ibéricos. Una Interpretación Geobotánica. Planeta, Barcelona, p 572Google Scholar
  9. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on north Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  10. Brauer A (2004) Annually laminated lake sediments and their palaeoclimatic relevance. In: Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds) The climate in historical times. Towards a synthesis of Holocene proxy data and climate models. Springer, Berlin, pp 109–128Google Scholar
  11. Camps J, Gonzalvo I, Güell J, López P, Tejero A, Toldrà X, Vallespinos F, Vicens M (1976) El lago de Montcortès, descripción de un ciclo anual. Oecología acuática 2:99–100Google Scholar
  12. Canals M, Got H, Julia R, Serra J (1990) Solution-collapse depressions and suspensates in the limnocrenic lake of Banyoles (NE Spain). Earth Surf Proc Land 15:243–254CrossRefGoogle Scholar
  13. Chung FH (1974a) Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix-flushing method for quantitative multicomponent analysis. J Appl Crystallogr 7:519–525CrossRefGoogle Scholar
  14. Chung FH (1974b) Quantitative interpretation of X-ray diffraction patterns of mixtures: II. Adiabatic principles of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7:526–531CrossRefGoogle Scholar
  15. Cohen AS (2003) Paleolimnology. The history and evolution of lake systems. Oxford University Press, New York, p 500Google Scholar
  16. Dean W (1999) The carbon cycle and biochemical dynamics in lake sediments. J Paleolimnol 21:375–393CrossRefGoogle Scholar
  17. Dragoni W (1998) Some consideration on climate changes, water resources and water needs in the Italian region south of 43ºN. In: Issar AS, Brown N (eds) Water, environment and society in times of climate change. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 241–272Google Scholar
  18. Drysdale R, Zanchetta G, Hellstrom J, Maas R, Fallick A, Pickett M, Cartwright I, Piccini L (2006) Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34:101–104CrossRefGoogle Scholar
  19. Fabian D, Zhou Z, Wehrli B, Friedl G (2003) Diagenetic cycling of arsenic in the sediments of eutrophic Baldeggersee, Switzerland. Appl Geochem 18:1497–1506CrossRefGoogle Scholar
  20. Giralt S, Moreno A, Valero-Garcés B, Sáez A, Bao R, Prego R, Pueyo JJ, González-Sampériz P, Taberner C (2008) A statistical approach to disentangle environmental forcings in a lacustrine record: the Lago Chungará case (Chilean Altiplano). J Paleolimnol 40:195–215CrossRefGoogle Scholar
  21. González-Sampériz P, Valero-Garcés BL, Moreno A, Morellon M, Navas A, Machin J, Delgado-Huertas A (2008) Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: saline lake records. Palaeogeogr Palaeoclimatol Palaeoecol 259:115–136CrossRefGoogle Scholar
  22. Julià R, Burjachs F, Dasí MJ, Mezquita F, Miracle RM, Roca JR, Seret G, Vicente E (1998) Meromixis origin and recent trophic evolution in the Spanish mountain lake La Cruz. Aquat Sci 60:279–299CrossRefGoogle Scholar
  23. Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes-chemistry, geology, physics. Springer, Berlin, pp 295–323Google Scholar
  24. Kropelin S, Verschuren D, Lezine AM, Eggermont H, Cocquyt C, Francus P, Cazet JP, Fagot M, Rumes B, Russell JM, Darius F, Conley DJ, Schuster M, von Suchodoletz H, Engstrom DR (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768CrossRefGoogle Scholar
  25. Lamb H, Gasse F, Benkaddour A, El Hamoutl N, Van der Kaars S, Perkins WT, Pearce NJ, Roberts CN (1995) Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373:134–137CrossRefGoogle Scholar
  26. Leira M (2005) Diatom responses to Holocene environmental changes in a small lake in northwest Spain. Quatern Int 140:90–102CrossRefGoogle Scholar
  27. Liu Z, Wang Y, Gallimore R, Notaro M, Prentice IC (2006) On the cause of abrupt vegetation collapse in North Africa during the Holocene: climate variability vs. vegetation feedback. Geophys Res Lett 33:L22709. doi: 10.1029/2006GL028062 CrossRefGoogle Scholar
  28. Llasat MC, Rigo T, Barriendos M (2003) The “Montserrat-2000” flash-flood event: a comparison with the floods that have occurred in the northeastern Iberian peninsula since the 14th century. Int J Climat 23:453–469CrossRefGoogle Scholar
  29. Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michczyñska DJ, Soja R, Starkel L, Thorndycraft VR (2006) Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66:145–154CrossRefGoogle Scholar
  30. Magny M (2006) Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors. In: Elias SA (ed) Encyclopedia of quaternary geology encyclopedia of quaternary science. Elsevier, AmsterdamGoogle Scholar
  31. Mangili C, Brauer A, Plessen B, Moscariello A (2007) Centennial-scale oscillations in oxygen and carbon isotopes of endogenic calcite from a 15, 500 varve year record of the Piànico interglacial. Quaternary Sci Rev 26:1725–1735CrossRefGoogle Scholar
  32. Martín-Puertas C, Valero-Garcés BL, Mata P, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in Southern Spain during the last 4000 Years: the Zoñar lake record, Córdoba. Holocene 18:907–921CrossRefGoogle Scholar
  33. Martín-Puertas C, Valero-Garcés BL, Brauer A, Mata MP, Delgado-Huertas A, Dulski P (2009) The Iberian-Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quaternary Res 71:108–120CrossRefGoogle Scholar
  34. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  35. Miracle MR, Vicente E, Pedrós-Alió C (1992) Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica 8:59–77Google Scholar
  36. Morellón M, Valero-Garcés B, Moreno A, González-Sampériz P, Mata P, Romero O, Maestro M, Navas A (2008) Holocene palaeohydrology and climate variability in northeastern Spain: The sedimentary record of Lake Estanya (Pre-Pyrenean range). Quatern Intern 181:15–31CrossRefGoogle Scholar
  37. Morellón M, Valero-Garcés BL, Vegas-Vilarrúbia T, González-Sampériz P, Romero Ó, Delgado-Huertas A, Mata P, Moreno A, Rico M, Corella JP (2009) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quaternary Sci Rev (in press). doi:  10.1016/j.quascirev.2009.05.014
  38. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolim 40:943–961CrossRefGoogle Scholar
  39. Noren AJ, Bierman PR, Steig EJ, Lini A, Southon J (2002) Millennial-scale storminess variability in the northeast United States during the Holocene epoch. Nature 419:821–824CrossRefGoogle Scholar
  40. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. Eos Trans 77:379CrossRefGoogle Scholar
  41. Pfister C, Luterbacher J, Schwarz-Zanetti G, Wegmann M (1998) Winter air temperature variations in Western Europe during the early and high middle ages (AD 750–1300). Holocene 8:535–552CrossRefGoogle Scholar
  42. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climat Dynam 24:263–278CrossRefGoogle Scholar
  43. Reale O, Dirmeyer P (2000) Modeling the effects of vegetation on Mediterranean climate during the roman classical period part I: Climate history and model sensitivity. Global Planet Chang 25:163–184CrossRefGoogle Scholar
  44. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0 to 26 Cal Kyr BP. Radiocarbon 46:1029–1058Google Scholar
  45. Rodríguez-Pascua MA, Becker A, Calvo JP, Davenport CA, Gómez-Gras D (2003) Sedimentart record of seismic events, with examples from recent and fossil lakes. In: Valero-Garcés B (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Biblioteca de Ciencias. C.S.I.C, Madrid, pp 253–281Google Scholar
  46. Romero-Viana L, Julià R, Camacho A, Vicente E, Miracle M (2008) Climate signal in varve thickness: Lake La Cruz (Spain), a case study. J Paleolim 40:703–714CrossRefGoogle Scholar
  47. Rosell J (1994) Mapa Geológico de España y Memoria. Escala 1:50.000, Hoja de Tremp (252). Instituto Tecnológico Geominero de España (IGME), MadridGoogle Scholar
  48. Sadori L, Giraudi C, Petitti P, Ramrath A (2004) Human impact at Lago di Mezzano (central Italy) during the Bronze Age: a multidisciplinary approach. Quatern Int 113:5–17CrossRefGoogle Scholar
  49. Schnurrenberger DW, Russell JM, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolim 29:141–154CrossRefGoogle Scholar
  50. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for Medieval hydroclimate. Quaternary Sci Rev 26:2322–2336CrossRefGoogle Scholar
  51. Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Mar Geol 240:77–97CrossRefGoogle Scholar
  52. Thorndycraft VR, Benito G (2006) Late Holocene fluvial chronology of Spain: the role of climatic variability and human impact. Catena 66:34–41CrossRefGoogle Scholar
  53. Valero-Garcés BL, Navas A, Machín J, Stevenson T, Davis B (2000) Responses of a saline lake ecosystem in a semiaric region to irrigation and climate variability. Ambio 29:344–350Google Scholar
  54. Valero-Garcés BL, González-Sampériz P, Navas A, Machín J, Mata P, Delgado-Huertas A, Bao R, Moreno A, Carrión JS, Schwalb A, González-Barrios A (2006) Human impact since Medieval times and recent ecological restoration in a Mediterranean lake: the laguna Zoñar (Spain). J Paleolim 35:441–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Juan Pablo Corella
    • 1
    Email author
  • Ana Moreno
    • 1
  • Mario Morellón
    • 1
  • Valentí Rull
    • 2
  • Santiago Giralt
    • 3
  • María Teresa Rico
    • 1
  • Ana Pérez-Sanz
    • 1
  • Blas Lorenzo Valero-Garcés
    • 1
  1. 1.Instituto Pirenaico de Ecología (CSIC)ZaragozaSpain
  2. 2.Institut de Botànic de Barcelona (CSIC)BarcelonaSpain
  3. 3.Instituto de Ciencias de la Tierra Jaume Almera (CSIC)BarcelonaSpain

Personalised recommendations