Journal of Paleolimnology

, Volume 45, Issue 4, pp 489–505 | Cite as

A reference typology of low alkalinity lakes in the UK based on pre-acidification diatom assemblages from lake sediment cores

  • Richard W. Battarbee
  • Gavin L. Simpson
  • Helen Bennion
  • Christopher Curtis
Original paper

Abstract

This paper has two aims: (1) to show for the first time how a natural typology can be established using palaeoecological methods; and (2) to show how it can be used in lake restoration studies with respect to the definition of recovery targets for acidified lakes. By defining the characteristic reference assemblages for low alkalinity site types rather than for a specific site it allows success to be measured more broadly, unconstrained by the specific composition of the pre-acidification flora. We analyse statistically the pre-acidification diatom assemblages of sediment cores from 121 low alkalinity lakes in the UK in order to assess whether a reference typology for such lakes can be defined on the basis of their diatom floras. We use samples dating to ~1850 AD to represent pre-acidification conditions. The results show that three main clusters can be identified, two dominated by benthic taxa (Clusters 1 and 3) and one dominated by planktonic taxa (Cluster 2). Cluster 1 is characterised by taxa such as Brachysira vitrea, Cymbella microcephala and Fragilaria spp., Cluster 2 by Cyclotella comensis, C. radiosa, Asterionella formosa, Aulacoseira subarctica and Achnanthes minutissima and Cluster 3 by Eunotia incisa, Frustulia rhomboides var. saxonica, Fragilaria virescens var. exigua, and Cymbella perpusilla. Although environmental data for 1850 AD are not available it is apparent from the contemporary distribution of the taxa in the different clusters that Cluster 2 represents the most alkaline pre-acidification conditions. Some sites in this cluster have been acidified, but some, especially the larger, deeper lakes have been enriched. Cluster 1 includes sites that contain diatoms with relatively high pH optima (pH 6.4–7.4) whereas Cluster 3 sites contain diatoms with the lowest pre-acidification pH conditions in the data-set. Sites in this cluster also have the lowest base cation concentrations at the present day and include the sites in the UK that have been most affected by acid deposition.

Keywords

Diatoms Diatom-inferred pH Acidification Reference conditions Lake typology Low alkalinity lakes 

References

  1. Almer B, Dickson W, Ekström C, Hörnström E, Miller U (1974) Effects of acidification on Swedish lakes. Ambio 3:30–36Google Scholar
  2. Battarbee RW (1984) Diatom analysis and the acidification of lakes. Philos Trans R Soc Lond Ser B Biol Sci 305:451–477CrossRefGoogle Scholar
  3. Battarbee RW, Anderson NJ, Appleby PG, Flower RJ, Fritz SC, Haworth EY, Higgitt S, Jones VJ, Kreiser A, Munro MAR, Natkanski J, Oldfield F, Patrick ST, Richardson NG, Rippey B, Stevenson AC (1988) Lake acidification in the United Kingdom 1800-1986: evidence from analysis of lake sediments. Ensis, London, 68 ppGoogle Scholar
  4. Battarbee RW, Allott TEH, Juggins S, Kreiser AM, Curtis CJ, Harriman R (1996) Critical loads of acidity to surface waters—an empirical diatom-based palaeolimnological model. Ambio 25:366–369Google Scholar
  5. Battarbee RW, Carvalho L, Jones VJ, Flower RJ, Cameron NG, Bennion H, Juggins S (2001) Diatoms. In: Smol JP, Last W, Birks HJB (eds) Tracking environmental change using lake sediments vol 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 155–202Google Scholar
  6. Battarbee RW, Monteith DT, Juggins S, Evans CD, Jenkins A, Simpson GL (2005) Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environ Pollut 137:135–149CrossRefGoogle Scholar
  7. Battarbee RW, Monteith DT, Juggins S, Simpson GL, Shilland EM, Flower RJ, Kreiser AM (2008) Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United Kingdom. Holocene 8(1):57–67CrossRefGoogle Scholar
  8. Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2010) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9417-5
  9. Beamish J, Harvey HH (1972) Acidification of La Cloche Mountain lakes, Ontario, and resulting fish mortalities. J Fish Res Board Canada 29:1131–1143CrossRefGoogle Scholar
  10. Bennion H, Appleby P, Boyle J, Carvalho L, Luckes S, Henderson A (2000) Water quality investigation of Loweswater, Cumbria. Final report to the environment agency, environmental change research centre, University College London, pp 80Google Scholar
  11. Bennion H, Shilland E, Appleby PG (2003) An assessment of recent environmental change in Llyn Tegid using the sediment record. In: Gritten RH, Duigan CA, Millband H (eds) The ecology, conservation and environmental history of the largest natural lake in Wales. University of Liverpool, Liverpool, pp 153–168Google Scholar
  12. Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138CrossRefGoogle Scholar
  13. Brakke DF, Henriksen A, Norton SA (1990) A variable F-factor to explain changes in base cation concentrations as a function of strong acid deposition. Verh Internat Verein Limnol 24:146–149Google Scholar
  14. Cameron NG (1995) The representation of diatom communities by fossil assemblages in a small acid lake. J Paleolimnol 14:185–223CrossRefGoogle Scholar
  15. Curtis CJ, Evans CD, Helliwell RC, Monteith DT (2005) Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environ Pollut 137:73–82CrossRefGoogle Scholar
  16. Davison W (1986) Sewage-sludge as an acidity filter for groundwater-fed lakes. Nature 322:820–822CrossRefGoogle Scholar
  17. Des Clers S, Simpson GL, Hughes M (2008) Surface water temperature archive for UK freshwater and estuarine sites. Science Report—SC070035, Environment Agency, UKGoogle Scholar
  18. Dufresne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  19. Flower RJ, Battarbee RW (1983) Diatom evidence for recent acidification of two Scottish lochs. Nature 305:130–133CrossRefGoogle Scholar
  20. Flower RJ, Beebee TJC (1987) The recent palaeolimnology of Woolmer Pond, Hampshire, with special reference to the documentary history and distribution of the Natterjack Toad, Bufo calamita L. ENSIS Publishing, LondonGoogle Scholar
  21. Flower RJ, Battarbee RW, Appleby PG (1987) The recent palaeolimnology of acid lakes in Galloway, Southwest Scotland: diatom analysis, pH trends, and the role of afforestation. J Ecol 75:797–824CrossRefGoogle Scholar
  22. Flower RJ, Jones VJ, Appleby PG, Richardson N, Rippey B, Rose NL, Stevenson AC (1993) The extent of regional acidification in north-west Scotland: Palaeoecological evidence. ECRC Research Paper 8Google Scholar
  23. Flower RJ, Rippey B, Rose NL, Appleby PG, Battarbee RW (1994) Palaeolimnological evidence for the acidification and contamination of lakes by atmospheric pollution in western Ireland. J Ecol 82:581–596CrossRefGoogle Scholar
  24. Harriman R, Morrison BRS (1982) The ecology of streams draining forested and non-forested catchments in an area of Scotland subject to acid precipitation. Hydrobiologia 88:251–263CrossRefGoogle Scholar
  25. Henriksen A (1979) A simple approach for identifying and measuring acidification in fresh water. Nature 278:542–545CrossRefGoogle Scholar
  26. Henriksen A, Kämäri J, Posch M, Wilander A (1992) Critical loads of acidity: nordic surface waters. Ambio 21:356–363Google Scholar
  27. Jensen KW, Snekvik E (1972) Low pH level wipe out salmon and trout populations in southernmost Norway. Ambio 1:223–225Google Scholar
  28. Jones VJ, Flower RJ, Appleby PG, Natkanski J, Richardson N, Rippey B, Stevenson AC, Battarbee RW (1993) Palaeolimnological evidence for the acidification and atmospheric contamination of lochs in the Cairngorm and Lochnagar areas of Scotland. J Ecol 81:3–24CrossRefGoogle Scholar
  29. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, p 876Google Scholar
  30. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, Stuttgart, p 596Google Scholar
  31. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, p 576Google Scholar
  32. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, p 437Google Scholar
  33. Kreiser AM, Appleby PG, Natkanski J, Rippey B, Battarbee RW (1990) Afforestation and lake acidification: a comparison of four sites in Scotland. Philos Trans R Soc Lond Ser B Biol Sci 327:377–383CrossRefGoogle Scholar
  34. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  35. Monteith DT, Evans CD (2005) The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environ Pollut 137:3–13CrossRefGoogle Scholar
  36. Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540CrossRefGoogle Scholar
  37. Overpeck JT, Webb T III, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogues. Quatern Res 23:87–108CrossRefGoogle Scholar
  38. Patrick ST, Timberlid JA, Stevenson AC (1990) The signficance of land-use and land-management change in the acidification of lakes in Scotland and Norway: an assessment utilizing documentary sources and pollen analysis. Philos Trans R Soc Lond Ser B Biol Sci 327:363–367CrossRefGoogle Scholar
  39. Phillips G (2003) Reporting typology for Ecoregion 18, Great Britain. TAG/LTT 43, March 2003Google Scholar
  40. Stevenson AC, Juggins S, Birks HJB, Anderson DS, Anderson NJ, Battarbee RW, Berge F, Davis RB, Flower RJ, Haworth EY, Jones VJ, Kingston JC, Kreiser AM, Line JM, Munro MAR, Renberg I (1991) The surface waters acidification project palaeolimnology programme: modern diatom/lake-water chemistry data-set. ENSIS, LondonGoogle Scholar
  41. Sutcliffe DW, Carrick TR, Heron J, Rigg E, Talling JF, Woof C, Lund JWG (1982) Long term and seasonal changes in the chemical composition of precipitation and surface waters of lakes and tarns in the English Lake District. Freshwat Biol 12:451–506CrossRefGoogle Scholar
  42. Vestreng V, Myhre G, Fagerli H, Reis S, Tarrason L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Richard W. Battarbee
    • 1
  • Gavin L. Simpson
    • 1
  • Helen Bennion
    • 1
  • Christopher Curtis
    • 1
  1. 1.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations