Advertisement

Journal of Paleolimnology

, Volume 45, Issue 4, pp 519–531 | Cite as

Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe

  • Richard Bindler
  • Johan Rydberg
  • Ingemar Renberg
Original paper

Abstract

The intention of the European Water Framework Directive (WFD) and the national guidelines that implement the WFD is that present-day conditions and future management strategies are to be based on an understanding of reference conditions for the particular water body of interest. In the context of non-synthetic pollutants such as lead, mercury and cadmium, the criteria for a high ecological status are that “concentrations [are] within the range normally associated with undisturbed conditions”. How this normal range is to be defined is open to interpretation; for example, in Sweden reference conditions based on sediment records are defined as the conditions prior to modern industrialization, i.e. prior to the mid-1800’s. These pre-industrial reference conditions would correspond to sediments 15–30 cm depth. However, ‘reference conditions’ are not always synonymous with ‘natural background conditions’. Analyses of long sediment profiles from Swedish lakes and from a few other areas, however, have shown that pre-industrial pollution—at least with regard to lead—was extensive. Atmospheric lead pollution has its origin in antiquity, with a small, well-defined peak already during the Greek-Roman period 2,000 years ago. Sediments deposited 300–500 years in Sweden and Scotland, for example, show a dominance of pollution lead, and in some sediment records also cadmium and copper pollution was extensive. Thus, in order to characterize natural background concentrations of metals, long sediment profiles are needed to reach sediments unaffected by pollution (>3,000 years BP); this can correspond to sediments below 50 cm in some lakes, but in others sediments below 300 cm or more.

Keywords

Cadmium Lead Mercury Metal pollution Reference conditions 

References

  1. Bindler R, Olofsson C, Renberg I, Frech W (2001a) Temporal trends in mercury accumulation in lake sediments in Sweden. Water Air Soil Pollut Focus 1:343–355CrossRefGoogle Scholar
  2. Bindler R, Renberg I, Brännvall M-L, Emteryd O, El-Daoushy F (2001b) A whole-basin study of sediment accumulation using stable lead isotopes and flyash particles in an acidified lake, Sweden. Limnol Oceanogr 46:178–188CrossRefGoogle Scholar
  3. Bindler R, Renberg I, Klaminder J (2008) Bridging the gap between ancient metal pollution and contemporary biogeochemistry. J Paleolimnol 40:755–770CrossRefGoogle Scholar
  4. Boyle JF (2001) Inorganic geochemical methods in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments. Kluwer, Dordrecht, pp 83–141Google Scholar
  5. Brännvall M-L, Bindler R, Renberg I, Emteryd O, Bartnicki J, Billström K (1999) The Medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environ Sci Technol 33:4391–4395CrossRefGoogle Scholar
  6. Brännvall M-L, Bindler R, Emteryd O, Renberg I (2001a) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25:421–435CrossRefGoogle Scholar
  7. Brännvall M-L, Kurkkio H, Bindler R, Emteryd O, Renberg I (2001b) The role of pollution versus natural geological sources for lead enrichment in recent lake sediments and surface forest soils. Environ Geol 40:1057–1065CrossRefGoogle Scholar
  8. Brodin Y-W (1997) Vem förorenar Sverige? (Who pollutes Sweden?). Naturvårdsverket (Swedish EPA), Stockholm, p 42Google Scholar
  9. Camarero L, Masqué P, Devos W, Ani-Ragolta I, Catalan J, Moor HC, Pla S, Sanchez-Cabeza JA (1998) Historical variations in lead fluxes in the Pyrenees (Northeast Spain) from a dated lake sediment core. Water Air Soil Pollut 105:439–449CrossRefGoogle Scholar
  10. Eades LJ, Farmer JG, MacKenzie AB, Kirika A, Bailey-Watts AE (2002) Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland. Sci Tot Environ 292:55–67CrossRefGoogle Scholar
  11. Ek AS, Renberg I (2001) Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden. J Paleolimnol 26:89–107CrossRefGoogle Scholar
  12. Engstrom DR, Wright HEJ (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Bath, pp 11–68Google Scholar
  13. Engstrom DR, Swain EB, Henning TA, Brigham ME, Brezonik PL (1994) Atmospheric mercury deposition to lakes and watersheds. In: Baker L (ed) Environmental chemistry of lakes and reservoirs. American Chemical Society, Washington, DC, pp 33–66CrossRefGoogle Scholar
  14. Erlandsson M, Bishop K, Fölster J, Guhrén M, Korsman T, Kronnäs V, Moldan F (2008) A comparison of MAGIC and paleolimnological predictions of preindustrial pH for 55 Swedish lakes. Environ Sci Technol 42:43–48CrossRefGoogle Scholar
  15. Farmer JG, Eades LJ, MacKenzie AB, Kirika A, Bailey-Watts TE (1996) Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 A.D. Environ Sci Technol 30:3080–3083CrossRefGoogle Scholar
  16. Grahn E, Karlsson S, Düker A (2006) Sediment reference concentrations of seldom monitored trace elements (Ag, Be, In, Ga, Sb, Tl) in four Swedish boreal lakes–comparison with commonly monitored elements. Sci Tot Environ 367:778–790CrossRefGoogle Scholar
  17. Håkanson L, Jansson M (1983) Principles of sedimentology. Springer, Berlin, p 316Google Scholar
  18. Holmström H (2004) Paleolimnologisk miljökvalitetsbedömning av sjön Noren från medeltidens gruvnäring till dagens industri. Magister thesis, Environmental Health, Umeå UniversityGoogle Scholar
  19. Hong SM, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science 265:1841–1843CrossRefGoogle Scholar
  20. Kempter H, Görres M, Frenzel B (1997) Ti and Pb concentrations in rainwater-bogs in Europe as indicators of past anthropogenic activities. Water Air Soil Pollut 100:367–377CrossRefGoogle Scholar
  21. Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 Years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  22. Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Global Biogeochem Cycles 16:1104CrossRefGoogle Scholar
  23. Lavila I, Filgueiras AV, Valverde F, Millos J, Palanca A, Bendicho C (2006) Depth profile of trace elements in a sediment core of a high-altitude lake deposit at the Pyrenees, Spain. Water Air Soil Pollut 172:273–293CrossRefGoogle Scholar
  24. Lee JA, Tallis JH (1973) Regional and historical aspects of lead pollution in Britain. Nature 245:216–218CrossRefGoogle Scholar
  25. Martínez-Cortizas A, Pontevedra-Pombal X, Nóvoa Muños JC, García-Rodeja E (1997) Four thousand years of atmospheric Pb, Cd and Zn deposition recorded by the ombrotrophic peat bog of Penido Vello (northwest Spain). Water Air Soil Pollut 100:387–403CrossRefGoogle Scholar
  26. Martínez-Cortizas A, Pontevedra-Pombal X, García-Rodeja E, Nóvoa Muños JC, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal pollution. Science 284:939–942CrossRefGoogle Scholar
  27. Monna F, Petit C, Guillaumet J-P, Jouffroy-Bapicot I, Blanchot C, Dominik J, Losno R, Richard H, Leveque J, Chateau C (2004) History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat bog (Morvan, France). Environ Sci Technol 38:665–673CrossRefGoogle Scholar
  28. Nilsson N (1998) Falu koppargruvas alder och föroreningsbelastning av koppar och bly i sjön Runn under 1000 år. Magister thesis, Environmental Health, Umeå UniversityGoogle Scholar
  29. Nriagu JO (1983) Lead and lead poisoning in antiquity. Wiley, NY, USA 437 ppGoogle Scholar
  30. Patterson C (1965) Contaminated and natural environments of man. Arch Environ Health 11:344–360Google Scholar
  31. Renberg I, Wik-Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326CrossRefGoogle Scholar
  32. Renberg I, Bindler R, Bradshaw E, Emteryd O, McGowan S (2001) Sediment evidence of early eutrophication and heavy metal pollution of Lake Mälaren, central Sweden. Ambio 30:496–502Google Scholar
  33. Rippey B, Douglas RW (2004) Reconstructing regional-scale lead contamination of the atmosphere (1850–1980) in the United Kingdom and Ireland using lake sediments. Global Biogeochem Cycles 18:GB4026Google Scholar
  34. Rognerud S, Skotvold T, Fjeld E, Norton SA, Hobaek A (1998) Concentrations of trace elements in recent and preindustrial sediments from Norwegian and Russian Arctic lakes. Can J Fish Aquat Sci 55:1512–1523CrossRefGoogle Scholar
  35. Roos-Barraclough F, Martinez Cortizas A, Garcia-Rodeja E, Shotyk W (2002) A 14500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet Sci Lett 202:435–451CrossRefGoogle Scholar
  36. Rydberg J, Gälman V, Renberg I, Bindler R, Lambertsson L, Martínez-Cortizas A (2008) Assessing the stability of mercury and methylmercury in a varved lake sediment deposit. Environ Sci Technol 42:4391–4396CrossRefGoogle Scholar
  37. Selig U, Leipe T, Dörfler W (2007) Paleolimnological recrds of nutrient and metal profiles in prehistoric, historic and modern sediments of three lakes in north-eastern Germany. Water Air Soil Pollut 184:183–194CrossRefGoogle Scholar
  38. Settle D, Patterson CC (1980) Lead in Albacore: guide to lead pollution in Americans. Science 207:1167–1176CrossRefGoogle Scholar
  39. Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, Van Der Knaap WO (1998) History of atmospheric lead deposition since 12, 370 14C yr BP from a peat bog, Jura mountains, Switzerland. Science 281:1635–1640CrossRefGoogle Scholar
  40. Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787CrossRefGoogle Scholar
  41. Wik M, Renberg I (1991) Recent atmospheric deposition in Sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments. Ambio 20:289–292Google Scholar
  42. Yang H, Rose NL (2003) Distribution of mercury in six lake sediment cores across the UK. Sci Tot Environ 304:391–404CrossRefGoogle Scholar
  43. Yang H, Rose NL, Boyle JF, Battarbee RW (2001) Storage and distribution of trace metals and spheroidal carbonaceous particles (SCPs) from atmospheric deposition in the catchment peats of Lochnagar, Scotland. Environ Pollut 115:231–238CrossRefGoogle Scholar
  44. Yang H, Rose NL, Battarbee RW (2002a) Distribution of some trace metals in Lochnagar, a Scottish mountain lake ecosystem and its catchment. Sci Tot Environ 285:197–208CrossRefGoogle Scholar
  45. Yang H, Rose NL, Battarbee RW, Monteith D (2002b) Trace metal distribution in the sediments of the whole lake basin for Lochnaga, Scotland: a palaeolimnological assessment. Hydrobiologia 479:51–61CrossRefGoogle Scholar
  46. Yang H, Linge K, Rose N (2007) The Pb pollution fingerprint at Lochnagar: the historical record and current status of Pb isotopes. Environ Pollut 145:723–729CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Richard Bindler
    • 1
  • Johan Rydberg
    • 1
  • Ingemar Renberg
    • 1
  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations