Journal of Paleolimnology

, Volume 45, Issue 4, pp 533–544 | Cite as

Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis

  • Helen Bennion
  • Richard W. Battarbee
  • Carl D. Sayer
  • Gavin L. Simpson
  • Thomas A. Davidson
Original paper

Abstract

The potential of palaeolimnological methods for establishing reference conditions and restoration targets for lakes has been recognised for some time, and has received renewed interest in recent years with the introduction of the EU Water Framework Directive. This paper considers some of the issues associated with the role of lake sediments in establishing reference conditions and defining recovery targets. We discuss the problem of attributing variation in the sediment record to human activity rather than to natural causes or random variability, and the need for the concepts of pristine and reference conditions to be differentiated. We address the question of expressing quantitatively the degree of change that has taken place between the reference and the present day and the problem of accounting for changes that may have taken place between the reference and the present, such as climate change, that may limit the use of the reference condition as a restoration target. Finally we consider the use of past habitat structure and inferred ecological functioning as targets for restoration, and the potential role that multi-proxy palaeoecological studies can play in defining such targets.

Keywords

Palaeolimnology Reference conditions Restoration targets Sediment record Water Framework Directive 

References

  1. Austin P, Mackay AW, Palushkina O, Leng M (2007) A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr. Quat Res 67:383–393CrossRefGoogle Scholar
  2. Ayres K, Sayer CD, Perrow M, Skeate E (2008) Palaeolimnology as a tool to inform shallow lake management: an example from Upton Great Broad, Norfolk, UK. Biodivers Conserv 17:2153–2168CrossRefGoogle Scholar
  3. Battarbee RW (1999) The importance of palaeolimnology to lake restoration. Hydrobiologia 395(396):149–159CrossRefGoogle Scholar
  4. Battarbee RW, Bennion H (2010) Palaeolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems. J Paleolimnol (this issue). doi:10.1007/s10933-010-9423-7
  5. Battarbee RW, Flower RJ, Appleby PG, Stevenson AC, Rippey B (1985) Lake acidification in Galloway: a palaeoecological test of competing hypotheses. Nature 314:350–352CrossRefGoogle Scholar
  6. Battarbee RW, Allott TEH, Juggins S, Kreiser AM, Curtis CJ, Harriman R (1996) Critical loads of acidity to surface waters—an empirical diatom-based palaeolimnological model. Ambio 25:366–369Google Scholar
  7. Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw Biol 50:1772–1780CrossRefGoogle Scholar
  8. Battarbee RW, Kernan M, Livingstone D, Nickus U, Verdonschot P, Hering D, Moss B, Wright R, Evans C, Grimalt J, Johnson R, Maltby E, Linstead L, Skeffington R (2008) Freshwater ecosystem responses to climate change: the Euro-limpacs project. In: Quevauviller P, Borchers U, Thompson C, Simonart T (eds) The Water Framework Directive—ecological and chemical status monitoring. Wiley, London, pp 313–354Google Scholar
  9. Battarbee RW, Simpson GL, Bennion H, Curtis C (2010a) A reference typology of low alkalinity lakes in the UK based on pre-acidification diatom assemblages from lake sediment cores. J Paleolimnol (this issue). doi:10.1007/s10933-010-9426-4
  10. Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2010b) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9417-5
  11. Bennion H, Battarbee R (2007) The European Union Water Framework Directive: opportunities for palaeolimnology. J Paleolimnol 38:285–295CrossRefGoogle Scholar
  12. Bennion H, Simpson GL (2010) The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J Paleolimnol (this issue). doi:10.1007/s10933-010-9422-8
  13. Bennion H, Simpson G, Hughes M, Phillips G, Fozzard I (2003) The role of palaeolimnology in identifying reference conditions and assessing ecological status of lakes. In: Ruoppa M, Heinonen P, Pilke A, Rekolainen S, Toivo H, Vuoristo H (eds) How to assess and monitor ecological quality in freshwaters. Tema Nord 547. Nordic Council of Ministers, Copenhagen, pp 57–63Google Scholar
  14. Bennion H, Sayer C, Tibby J, Carrick H (2010a) Diatoms as indicators of environmental change in shallow lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  15. Bennion H, Simpson GL, Anderson NJ, Clarke G, Dong X, Hobæk A, Guilizzoni P, Marchetto A, Sayer CD, Thies H, Tolotti M (2010b) Defining ecological and chemical reference conditions and restoration targets for nine European lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9418-4
  16. Bindler R, Rydberg J, Renberg I (2010) Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J Paleolimnol (this issue). doi:10.1007/s10933-010-9425-5
  17. Birks HJB (1996) Contributions of quaternary palaeoecology to nature conservation. J Veg Sci 7:89–98CrossRefGoogle Scholar
  18. Bjerring R, Bradshaw EG, Amsinck SL, Johansson LS, Odgaard BV, Nielsen AB, Jeppesen E (2008) Inferring recent changes in the ecological state of 21 Danish candidate reference lakes (EU Water Framework Directive) using palaeolimnology. J Appl Ecol 45:1566–1575CrossRefGoogle Scholar
  19. Bradshaw EG, Nielsen AB, Anderson NJ (2006) Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Reg Environ Change 6:17–24CrossRefGoogle Scholar
  20. Branväll ML, Bindler R, Emteryd O, Renberg I (2001) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25:421–435CrossRefGoogle Scholar
  21. Cunningham L, Bishop K, Mettävainio E, Rosén P (2010) Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9420-x
  22. Davidson T, Sayer C, Bennion H, David C, Rose N, Wade M (2005) A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshw Biol 50:1671–1686CrossRefGoogle Scholar
  23. Davidson TA, Sayer CD, Langdon PG, Burgess A, Jackson M (2010a) Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model. Freshw Biol 55:584–599Google Scholar
  24. Davidson TA, Sayer CD, Perrow M, Bramm M, Jeppesen E (2010b) The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshw Biol 55:546–564Google Scholar
  25. Deevey ES (1984) Stress, strain and stability in lacustrine ecosystems. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 203–229Google Scholar
  26. Digerfeldt G (1972) The post-glacial development of Lake Trummen. Regional vegetation history, water level changes and palaeolimnology. Folia Limnol Scand 16:1–96Google Scholar
  27. European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 20000 establishing a framework for community action in the field of water policy. Off J Eur Commun L327:1–72Google Scholar
  28. Flower RJ, Juggins SJ, Battarbee RW (1997) Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for conservation and restoration with special reference to acidified systems. Hydrobiologia 344:27–40CrossRefGoogle Scholar
  29. Fritz S (1989) Lake development and limnological response to prehistoric land-use in Diss Mere, Norfolk, UK. J Ecol 77:182–202CrossRefGoogle Scholar
  30. Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S (2010) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9421-9
  31. Jenkins A, Whitehead PG, Cosby BJ, Birks HJB (1990) Modelling long-term acidification: a comparison with diatom reconstructions and the implications for reversibility. Phil Trans R Soc B 327:435–440CrossRefGoogle Scholar
  32. Jeppesen E, Madsen EA, Jensen JP (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration set from shallow lakes. Freshw Biol 36:115–127CrossRefGoogle Scholar
  33. Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (1998) The structuring role of submerged macrophytes in lakes. Ecological studies series 131. Springer, New YorkGoogle Scholar
  34. Jeppesen E, Jensen JP, Skovgaard H, Hvidt CB (2001a) Changes in the abundance of planktivorous fish in Lake Skanderbord during the past two centuries—a palaeoecological approach. Palaeogeogr Palaeoclimatol Palaeoecol 172:143–152CrossRefGoogle Scholar
  35. Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001b) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198CrossRefGoogle Scholar
  36. Jeppesen E, Moss B, Bennion H, Carvalho L, De Meester L, Friberg N, Gessner MO, Lauridsen TL, May L, Meerhoff M, Olafsson JS, Soons MB, Verhoeven JTA (in press) Chapter 5 interaction of climate change and eutrophication. In: Kernan M, Moss B, Battarbee RW (eds) Climate change impacts on freshwater ecosystems: direct effects and interactions with other stresses. Wiley, ChichesterGoogle Scholar
  37. Jones VJ, Stevenson AC, Battarbee RW (1986) Lake acidification and the land-use hypothesis: a mid-post-glacial analogue. Nature 322:157–158CrossRefGoogle Scholar
  38. Leira M, Jordan P, Taylor D, Dalton C, Bennion H, Rose N, Irvine K (2006) Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. J Appl Ecol 43:816–827CrossRefGoogle Scholar
  39. Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540CrossRefGoogle Scholar
  40. Pennington W (1978) The impact of man on some English lakes: rates of change. Pol Arch Hydrobiol 25:429–437Google Scholar
  41. Rawcliffe R, Sayer CD, Woodward G, Grey J, Davidson TA, Jones JI (2010) Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs. Freshw Biol 55:600–613Google Scholar
  42. Renberg I (1990) A 12, 600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Phil Trans R Soc B 327:357–361CrossRefGoogle Scholar
  43. Rippey B (1990) Sediment chemistry and atmospheric contamination. Phil Trans R Soc B 327:311–317CrossRefGoogle Scholar
  44. Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, Jeppesen E, Korhola A, Punning JM (2010) Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedence. J Paleolimnol (this issue). doi:10.1007/s10933-010-9424-6
  45. Salgado J, Sayer C, Carvalho L, Davidson T, Gunn I (2010) Assessing aquatic macrophyte community change through the integration of palaeolimnological and historical data at Loch Leven, Scotland. J Paleolimnol 43:191–204Google Scholar
  46. Sayer CD, Davidson TA, Jones JI (2010a) Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw Biol 55:500–513Google Scholar
  47. Sayer CD, Davidson TD, Jones JI, Langdon PG (2010b) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55:487–499Google Scholar
  48. Sayer CD, Burgess A, Kari K, Davidson TA, Peglar S, Yang H, Rose N (2010c) Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte dominance. Freshw Biol 55:565–583Google Scholar
  49. Simpson GL, Anderson NJ (2009) Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models. Limnol Oceanogr 54:2529–2541CrossRefGoogle Scholar
  50. Simpson GL, Shilland EM, Winterbottom JM, Keay J (2005) Defining reference conditions for acidified waters using a modern analogue approach. Environ Pollut 137:119–133CrossRefGoogle Scholar
  51. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell, Oxford 383 ppGoogle Scholar
  52. Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276CrossRefGoogle Scholar
  53. Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681CrossRefGoogle Scholar
  54. Wallin M, Wiederholm T, Johnson RK (2005) Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. CIS Working Group 2.3—REFCOND, 93 ppGoogle Scholar
  55. Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Helen Bennion
    • 1
  • Richard W. Battarbee
    • 1
  • Carl D. Sayer
    • 1
  • Gavin L. Simpson
    • 1
  • Thomas A. Davidson
    • 1
  1. 1.Department of Geography, Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations