Journal of Paleolimnology

, Volume 44, Issue 1, pp 361–374 | Cite as

Oribatid mite assemblages across the tree-line in western Norway and their representation in lake sediments

  • Arguitxu de la Riva-CaballeroEmail author
  • H. John B. Birks
  • Anne E. Bjune
  • Hilary H. Birks
  • Torstein Solhøy
Original paper


Little is known about the relationships between fossil oribatid mite assemblages in lake and mire sediments and the composition, abundance, and richness of their living communities. Because oribatid mites are a relatively new area of palaeolimnological study, there is a great lack of knowledge about the taphonomic processes that might affect fossil mite assemblages. The DOORMAT (Direct Observation Of Recent Macrofossils Across Tree-line) project was designed to study the transport and deposition of oribatid mites and plant remains in the tree-line area of western Norway. The present study also compares modern oribatid assemblages with fossil oribatid assemblages in a Holocene lake-sediment sequence from the nearby Trettetjørn, and considers the optimal location for studying fossil oribatid mites within a lake basin. Seven novel terrestrial traps (50 × 80 cm Astroturf doormats) were placed at major vegetational transitions along an altitudinal transect crossing the tree-line ecotone from 633 to 1,120 m a.s.l. at Upsete, west Norway. Three sediment traps were placed in Trettetjørn (810 m at the inlet, the middle, and near the outlet. In each terrestrial trap, the oribatid assemblage was found to be characteristic of the surrounding habitat. The lake-trap analyses showed that aquatic or moist-habitat species had the highest chance of being incorporated into the lake sediments; the number of terrestrial species decreased considerably from both outlet and inlet traps to the central trap in the deepest water. The area adjacent to the inlet of Trettetjørn would therefore be the optimal location for a sediment core for oribatid analysis. However, this conclusion is not supported when the modern trap results are compared with the Trettetjørn sequence from the lake centre.


Acari Cryptostigmata Oribatida Humidity gradient Taphonomy Tree-line 



This is publication no. A245 from the Bjerknes Centre for Climate Research. We gratefully acknowledge funding from Bergen Myrdyrkningsfond in 2004 and from the Olaf Grolle Olsens legat til UiB med tilførsel av arv etter Miranda Bødtker in 2004 and 2005. We thank the many students and staff from University of Bergen and other universities who participated in the DOORMAT field work. We especially thank Marianne Presthus Heggen, Luis S. Subías, the reviewers, and Tom Whitmore for making many valuable comments on earlier versions of the manuscript, Øystein Lohne for helping with the map, and Cathy Jenks for invaluable help.

Supplementary material

10933_2010_9411_MOESM1_ESM.doc (106 kb)
Table ESM1 Taxa found in the DOORMAT traps with their respective abbreviations used in the PCA plots (Figs. 5, 6), their taxonomic authority, and their ecological group (DOC 106 kb)
10933_2010_9411_MOESM2_ESM.doc (36 kb)
Table ESM2 Juvenile taxa identified to at least family level (DOC 35 kb)
10933_2010_9411_MOESM3_ESM.doc (38 kb)
Table ESM3 List of species synonymised since the last publication in Norway and of taxa found for the first time in Norway (DOC 38 kb)
10933_2010_9411_MOESM4_ESM.doc (35 kb)
Table ESM4 A. Summary of the PCA results of the trap data showing the eigenvalues and cumulative percentage variance for the first four axes. Only the two-first axes are used in the discussion of the results. B. Trettetjørn and trap PCA summary, showing the eigenvalues and cumulative percentage variance for the first four axes. Only the two-first axes are used in the discussion of the results (DOC 35 kb)
10933_2010_9411_MOESM5_ESM.doc (28 kb)
Table ESM5 Percentages of the different ecological groups found in the Trettetjørn lake traps. See Figures 4 and 6 (DOC 28 kb)


  1. Berglund BE (1986) Palaeoecological reference areas and reference sites. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 111–126Google Scholar
  2. Birks HH (2001) Plant Macrofossils. In: Smol J, Birks HJB, Last W (eds) Tracking environmental change using lake sediments, vol 4. Zoological indicators. Kluwer, Dordrecht, pp 50–74Google Scholar
  3. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London, p 285Google Scholar
  4. Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251CrossRefGoogle Scholar
  5. Birks HH, Bjune AE (2009). Can we detect a west-Norwegian tree-line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veg Hist Archaeobot (in press)Google Scholar
  6. Birks HH, Battarbee RW, Beerling DJ, Birks HJB, Brooks SJ, Duigan CA, Gulliksen S, Haflidason H, Hauge F, Jones VJ, Jonsgard B, Kårevik M, Larsen E, Lemdahl G, Løvlie R, Mangerud J, Peglar SM, Possnert G, Smol JP, Solem JO, Solhøy I, Solhøy T, Sønstegaard E, Wright HE (1996) The Kråkenes Late-glacial palaeoenvironmental project. J Paleolimnol 15:281–286CrossRefGoogle Scholar
  7. Bjune AE (2005) Holocene vegetation history and tree-line changes on a north-south transect crossing major climate gradients in southern Norway—evidence from pollen and plant macrofossils in lake sediements. Rev Palaeobot Palyno 133:249–275CrossRefGoogle Scholar
  8. Convey P (1997) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J Therm Biol 22:429–440CrossRefGoogle Scholar
  9. De la Riva-Caballero A (2003) Oribatid mite communities in bogs along an altitudinal gradient and palaeoecological reconstruction using fossil oribatid mites, in western Norway. Master Thesis, unpublished. University of Bergen, Zoology DepartmentGoogle Scholar
  10. De la Riva-Caballero A, Solhøy T (2005) Archaeological excavation at Kvitevoll, Halsnøy Island, Sunnhordaland, Western Norway, 2004. Results from the Oribatid mites analysis. Report. University of BergenGoogle Scholar
  11. Drouk AY (1997) Acarological analysis: problems of paleoecological reconstructions. In: Edwards ME, Sher AV, Guthrie RD (eds) Terrestrial paleoenvironmental studies in Beringia. The Alaska Quaternary Center, University of Alaska Fairbanks, Fairbanks, pp 91–97Google Scholar
  12. Edwards JS (1972) Arthropod fallout on Alaskan snow. Arctic Alpine Res 4:167–176CrossRefGoogle Scholar
  13. Edwards JS, Banko PC (1976) Arthropod fallout and nutrient transport: a quantitative study of Alaskan snowpatches. Arctic Alpine Res 8:237–245CrossRefGoogle Scholar
  14. Edwards JS, Sugg PM (1993) Arthropod fallout as a resource in the recolonization of Mount St. Helens. Ecology 74:954–958CrossRefGoogle Scholar
  15. Erickson JM (1988) Fossil oribatid mites as tools for Quaternary paleoecologists: preservation quality, quantities, taphonomy. In: Laub RS, Miller NG, Steadman DW (eds) Late pleistocene and early holocene paleoecology and archeology of the eastern great lakes region. The Buffalo Society of Natural Sciences, pp 207–226Google Scholar
  16. Fernández NA, Thias-Binche F (1986) Analyse démographique d’une population d’Hydrozetes lemnae Coggi, Acarien Oribate inféodé à la lentille d’eau Lemna gibba L. en Argentine. 1. Méthodes et techniques, démographie d’H. lemnae comparaisons avec d’autres Oribates. Zool J Syst 113:213–228Google Scholar
  17. Gilyarov MS (1975) A Key to the Soil-Inhabiting Mites. Sarcoptiformes. Nauka (ed), Moscow, USSRGoogle Scholar
  18. Gjelstrup P, Solhøy T (1994) Oribatid mites. In: Jónasson PM (ed) The Zoology of Iceland. Carlsberg-Fond Icelandic Litterature Society, Copenhagen, pp 1–78Google Scholar
  19. Glew JR, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. Basin analysis. Coring and chronological techniques. Kluwer, Dordrecht, pp 73–105Google Scholar
  20. Grandjean F (1948) Sur les Hydrozetes (Acariens) de L’Europe occidentale. Bull Mus natl His nat 20:328–335Google Scholar
  21. Grimm EC (1993) Tilia. 2.0.b4. Illinois State Museum, research and collections center. Illinois State MuseumGoogle Scholar
  22. Grimm EC (2004) TGView. 2.0.2. Illinois State Museum, research and collections center. Illinois State MusuemGoogle Scholar
  23. Hammer M (1965) Are low temperatures a species preserving factor? Illustrated by the oribatid mite Mucronothrus nasalis (Willm). Acta Univ Lund 2:2–10Google Scholar
  24. Johannessen RA (2002) Oribatid mite diversity and abundance in relation to ecological factors along a snow bed to ridge top to snow bed transect in an alpine environment at Finse, Norway. Unpublished Master thesis, University of Bergen, Zoological DepartmentGoogle Scholar
  25. Krivolutsky DA, Lebedeva NV (2004) Oribatid mites (Oribatei) in bird feathers: passeriformes. Acta Zoologica Lituanica 14:19–38Google Scholar
  26. Larsen J, Bjune AE, De la Riva-Caballero A (2006) Holocene environmental and climate history of Trettetjørn, a Low-alpine Lake in Western Norway, based on subfossil pollen, diatoms, oribatid mites, and plant macrofossils. Arctic Antarct Alpine Res 38:571–583CrossRefGoogle Scholar
  27. Larsson E-L, Molau U (2001) Snowbeds trapping seed rain–a comparison of methods. Nord J Bot 21:385–392CrossRefGoogle Scholar
  28. Lawrence E (2008) Henderson’s dictionary of biology, 14th edn. Pearson Education Limited, Harlow, p 759Google Scholar
  29. Lebedeva NV, Krivolutsky DA (2003) Birds spread soil microarthropods to Arctic Islands. Dokl Bio Sci 391:329–332CrossRefGoogle Scholar
  30. Lid J, Lid DT (1994) Norsk flora, 6th edn. Det Norske Samlaget, Oslo, p 1014Google Scholar
  31. Materna J (2000) Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonose Mts. (Czech Republic). Pedobiologia 44:40–62CrossRefGoogle Scholar
  32. Mehl R (1979) Checklist of Norwegian ticks and mites (Acari). Fauna Norv Serie B 31–45Google Scholar
  33. Miko L, Stanko M (1991) Small mammals as carriers of non-parasitic mites (Oribatida, Uropodina). In: Dusbábek F, Bukva V (eds) Modern Acarology 1. Academia and SPB Academic Publishing bv, Prague and The Hague, pp 395–402Google Scholar
  34. Molau U (1996) Seed rain monitoring at ITEX sites. In: Molau U, Mølgaard P (eds) ITEX manual. Danish Polar Center, Copenhagen 42 ppGoogle Scholar
  35. Molau U, Larsson E-L (1999) Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Can J Botany 78:728–747CrossRefGoogle Scholar
  36. Norton RA (1980) Observation on phoresy by oribatid mites (Acari: Oribatei). Int J Acarol 6:121–130CrossRefGoogle Scholar
  37. Norton RA (1994) Evolutionary Aspects of Oribatid Mite Life Histories and Consequences for the Origin of the Astigmata. In: Houck MA (ed) Mites ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp 99–135Google Scholar
  38. Norton RA (2007) Holistic Acarology and ultimate causes: examples from the Oribatid mites. In: Morales-Malacara JB, Behan-Pelletier VM, Ueckermann E, Perez TM, Estrada-Venegas EG, Badii M (eds) Acarology XI: proceedings of the international congress. Universidad Nacional Autónoma de México Sociedad Latinoamericana de Acarología, Merida (México), pp 3–20Google Scholar
  39. Norton RA, Williams DD, Hogg ID, Palmer SC (1988) Biology of the oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in eastern Canada. Can J Zoolog 66:622–629CrossRefGoogle Scholar
  40. Norton RA, Behan-Pelletier VM, Wang HF (1996) The aquatic oribatid mite genus Mucronothrus in Canada and the western U.S.A. (Acari: Trhypochthoniidae). Can J Zoolog 74:926–949CrossRefGoogle Scholar
  41. Øvsthus GK (2006) Association of oribatid mites with two lichen species in Hordaland, western Norway, with respect to a climatic gradient and lichen compounds. Unpublished Master thesis, Department of Biology, University of BergenGoogle Scholar
  42. Pérez-Íñigo C (1993) ACARI, Oribatei, Poronota. In: Ramos Sánchez MA, Tercedor JA, Bellés i Ros X, Gosálbez i Noguera J, Guerra Sierra A, Macpherson Mayol E, Martín Piera F, Serrano Marino J, Templado González J (eds) Fauna Ibérica. Museo Nacional de Ciencias Naturales CSIC, Madrid, p 320Google Scholar
  43. Schelvis J (1997) Remains of mites (Acari) as palaeo-ecological indicators: dwelling mounds and medieval reclamations in The Netherlands. In: Environment and subsistence in medieval Europe—Medieval Europe, Brugge 1997 conference 9. Institute for the Archaeological Heritage, The NetherlandsGoogle Scholar
  44. Schelvis J, Van Geel B (1989) A palaeoecological study of the mites (Acari) from a lateglacial deposit at Usselo (The Netherlands). Boreas 18:237–243CrossRefGoogle Scholar
  45. Seyd EL, Seaward MRD (1984) The association of oribatid mites with lichens. Zool J Linn Soc-Lond 80:369–420CrossRefGoogle Scholar
  46. Smith AJE (2004) The moss flora of Britain and Ireland. Cambridge University Press, Cambridge, p 1012Google Scholar
  47. Solhøy T (1975) Dynamics of oribatei populations on Hardangervidda. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems, part 2. Springer, Berlin, pp 60–65Google Scholar
  48. Solhøy T (2001) Oribatid mites. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 4. Zoological indicators. Kluwer, Dordrecht, pp 81–104Google Scholar
  49. Solhøy IW, Solhøy T (2000) The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J Paleolimnol 23:35–47CrossRefGoogle Scholar
  50. Søvik G (2004) The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari: Oribatida). Exp Appl Acarol 34:3–20CrossRefGoogle Scholar
  51. Subías LS (2009) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (Excepto fósiles)., pp 540
  52. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, p 500Google Scholar
  53. Walter D, Proctor H (1999) Mites: ecology, evolution and behaviour. CABI Publishing, New York, p 323Google Scholar
  54. Weigmann G (2006) Hornmilben (Oribatida). Goecke and Evers Keltern, Keltern, p 520Google Scholar
  55. Weigmann G, Deichsel R (2006) Acari: Limnic Oribatida. In: Gerecke R (ed) Sübwasserfauna von Mitteleuropa, vol. 7/2–1 Chelicerata: Araneae/Acari I. Elsevier, Spektrum, p 400Google Scholar
  56. Weigmann G, Kratz W (1981) Die deutschen Hornmilbenarten und ihre ökologische Charakteristik. Zoologische Beiträge 27:459–489Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Arguitxu de la Riva-Caballero
    • 1
    • 2
    Email author
  • H. John B. Birks
    • 2
    • 3
    • 4
  • Anne E. Bjune
    • 4
  • Hilary H. Birks
    • 2
    • 4
  • Torstein Solhøy
    • 2
  1. 1.Bergen MuseumUniversity of BergenBergenNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK
  4. 4.Bjerknes Centre for Climate Research, c/o Department of BiologyBergenNorway

Personalised recommendations