Journal of Paleolimnology

, Volume 43, Issue 4, pp 689–704 | Cite as

Testate amoeba analysis of lake sediments: impact of filter size and total count on estimates of density, species richness and assemblage structure

  • A. A. J. Wall
  • D. Gilbert
  • M. Magny
  • E. A. D. Mitchell
Original paper


Testate amoebae are informative about palaeoecological conditions, but the methods generally used for their analyses in lake sediments differ from those used for their analyses in peats, making comparisons difficult. This study examines how filter mesh size and total number of individuals counted affect species richness, Shannon diversity, equitability, density and assemblage structure. We analysed the complete testate amoeba contents of six sediment samples from Lake Lautrey, France. The abundance of testate amoebae was high (1,403–10,870 shells cm−3), and species smaller than 63 μm in both length and width represented up to 89% of total abundance and 43% of species richness. A simulation showed that using 47- or 63-μm mesh-size filters reduced inter-sample differences and changed the patterns of abundance, species richness and assemblage structure, causing loss of information and leading to potential erroneous palaeoecological interpretation. Rarefaction analyses suggest that although 170 shells are sufficient to assess the general structure of assemblages, such small sample sizes can underestimate species richness by overlooking taxa with relative abundances <4%. Total counts of 400 shells yield better estimates of assemblage structure and recover at least 50% of total species richness, although species with absolute frequencies below 2% may still be missed. Higher counts are required to obtain reliable estimates of species richness and assemblage structure in samples that have high testate amoeba densities but are dominated by a few small taxa. Further studies should determine the bioindicator value and functional roles of small and/or rare species in lakes and thus to what extent overlooking them affects palaeoecological interpretations.


Thecamoebians Palaeoecology Lake sediment Diversity Abundance Filter mesh size 



Funding to EM by Swiss NSF project no. 205321-109709/1 and CCES projects RECORD and BigLink is kindly acknowledged. The region of Franche-Comté and the French CNRS are also thanked for their financial participation. The authors thank two anonymous referees and Thomas J. Whitmore for their helpful comments on the manuscript.


  1. Asioli A, Medioli FS, Patterson RT (1996) Thecamoebians as a tool for reconstruction of paleoenvironments in some Italian lakes in the foothills of the Southern Alps (Orta, Varese, and Candia). J Foraminiferal Res 26:248–263CrossRefGoogle Scholar
  2. Beyens L, Meisterfeld R (2001) Protozoa: testate amoebae. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, Algal, and Siliceous indicators. Kluwer, Dordrecht, pp 121–153Google Scholar
  3. Burbidge SM, Shröder-Adams CJ (1998) Thecamoebians in Lake Winnipeg: a tool for Holocene Paleolimnology. J Paleolimnol 19:309–328CrossRefGoogle Scholar
  4. Cash J, Hopkinson J (1905) The British freshwater rhizopoda and heliozoa, vol I, Rhizopoda, Part I. London: printed for the Ray Society, 148 pGoogle Scholar
  5. Cash J, Hopkinson J (1909) The British freshwater rhizopoda and heliozoa, vol II, Rhizopoda, Part II. London: printed for the Ray Society, 166 pGoogle Scholar
  6. Cash J, Wailes GH, Hopkinson J (1915) The British freshwater rhizopoda and heliozoa, vol III, Rhizopoda, Part III. London: printed for the Ray Society, 156 pGoogle Scholar
  7. Cash J, Wailes GH, Hopkinson J (1919) The British freshwater rhizopoda and heliozoa, vol IV, Rhizopoda, Part IV. London: printed for the Ray Society, 130 pGoogle Scholar
  8. Chardez D (1967) Histoire naturelle des Protozoaires Thécamoebiens. Bruxelles: Les Naturalistes Belges, 100 pGoogle Scholar
  9. Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Q Sci Rev 20:1753–1764CrossRefGoogle Scholar
  10. Charman DJ, Roe HM, Gehrels WR (1998) The use of testate amoebae in studies of sea-level chane: a case study from the Taf Estuary, South Wales, UK. Holocene 8:209–218CrossRefGoogle Scholar
  11. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rizopoda) in peats. QRA Technical Guide No. 9, Quaternary Research Association, London, 147 pGoogle Scholar
  12. Charman DJ, Blundell A, ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Q Sci 22:209–221CrossRefGoogle Scholar
  13. Dallimore A, Schröder-Adams CJ, Dallimore SR (2000) Holocene environmental history of thermokarst lakes on Richards Island, Northwest Territories, Canada: thecamoebians as paleolimnological indicators. J Paleolimnol 23:261–283CrossRefGoogle Scholar
  14. Ellison RL (1995) Paleolimnological analysis of Ullswater using testate amoebae. J Paleolimnol 13:51–63CrossRefGoogle Scholar
  15. Gilbert D, Mitchell EAD (2006) Microbial diversity in Sphagnum peatlands. In: Martini IP, Matinez Cortizas A, Chesworth W (eds) Peatlands: basin evolution and depository of records on global environmental and climatic changes. Elsevier, Amsterdam, pp 287–319CrossRefGoogle Scholar
  16. Gilbert D, Amblard C, Bourdier G, Francez A-J (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microbial Ecol 35:83–93CrossRefGoogle Scholar
  17. Gilbert D, Amblard C, Bourdier G, Francez A-J, Mitchell EAD (2000) Le régime alimentaire des Thécamoebiens (Protista, Sarcodina). Annee Biol 39:57–68Google Scholar
  18. Gilbert D, Mitchell EAD, Amblard C, Bourdier G, Francez A-J (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum Peatland. Acta Protozool 42:99–104Google Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electronica 4:1–9Google Scholar
  20. Heal OW (1963) The distribution of testate amoebae (Rhizopoda, testacea) in some fens and bogs in Nothern England. Zool J Linn Soc 23:254–264Google Scholar
  21. Lamentowicz M, Cedro A, Gałka M, Goslar T, Miotk-Szpiganowicz G, Mitchell EAD, Pawlyta J (2008) Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeogr Palaeoclimatol Palaeoecol 265:93–106CrossRefGoogle Scholar
  22. Magny M, Aalbersberg G, Bégeot C, Benoit-Ruffaldi P, Bossuet G, Disnar JR, Heiri O, Laggoun-Defarge F, Mazier F, Millet L, Peyron O, Vannière B, Walter-Simonnet AV (2006) Environmental and climatic changes in the Jura mountains (eastern France) during the Lateglacial-Holocene transition: a multi-proxy record from Lake Lautrey. Q Sci Rev 25:414–445CrossRefGoogle Scholar
  23. Mast SO, Root FM (1916) Observations on amoeba feeding on rotifers, nematodes and ciliates and their bearing on the surface-tention theory. J Exp Zool 21:33–49CrossRefGoogle Scholar
  24. McCarthy FMG, Collins ES, McAndrews JH, Kerr HA, Scott DB, Medioli FS (1995) A comparison of postglacial Arcellacean (Thecamoebian) and pollen succession in Atlantic Canada, illustrating the potential of Arcellaceans for palaeoclimatic reconstruction. J Paleontol 69:980–993Google Scholar
  25. Medioli FS, Scott DB (1983) Holocene Arcellacea (Thecamoebians) from eastern Canada. Cushman Foundation for Foraminiferal Res, Washington, Special Publication 21, 63 pGoogle Scholar
  26. Medioli FS, Scott DB (1988) Lacustrine thecamoebians (mainly Arcellaceans) as potential tools for palaeolimnological interpretations. Palaeogeogr Palaeoclimatol Palaeoecol 62:361–386CrossRefGoogle Scholar
  27. Meisterfeld R (2002a) Order Arcellinida. In: Lee JJ, Leedale GF, Bradbury PC (eds) The illustrated guide to the Protozoa, 2nd edn. Society of Protozoologists, Lawrence, pp 827–860Google Scholar
  28. Meisterfeld R (2002b) Testate amoebae with filopodia. In: Lee JJ, Leedale GF, Bradbury PC (eds) The illustrated guide to the Protozoa, 2nd edn. Society of Protozoologists, Lawrence, pp 1054–1084Google Scholar
  29. Mitchell EAD, Payne RJ, Lamentowicz M (2007) Potential implications of differential preservation of testate amoebae shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol 40:603–618CrossRefGoogle Scholar
  30. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae (Protozoa) in ecological and paleoecological studies of wetlands: past, present, and future. Biodivers Conserv 17:2115–2137CrossRefGoogle Scholar
  31. Nguyen-Viet H, Gilbert D, Bernard N, Mitchell EAD, Badot P-M (2004) Relationship between atmospheric pollution characterized by NO2 concentrations and testate amoebae abundance and diversity. Acta Protozool 43:233–329Google Scholar
  32. Nguyen-Viet H, Bernard N, Mitchell EAD, Cortet J, Badot P-M, Gilbert D (2007) Relationship between testate amoeba (Protist) communities and atmospheric heavy metals accumulated in Barbula indica (Bryophyta) in Vietnam. Microbial Ecol 53:53–65CrossRefGoogle Scholar
  33. Nguyen-Viet H, Bernard N, Mitchell EAD, Badot P-M, Gilbert D (2008) Effect of lead pollution on testate amoebae communities living in Sphagnum fallax: an experimental study. Ecotox Environ Safe 69:130–138CrossRefGoogle Scholar
  34. Ogden CG (1983) Observations on the systematics of the genus Difflugia in Britain (Rhizopoda, Protozoa). Bull Br Mus (Natural History), Zoology series 44, 73 pGoogle Scholar
  35. Ogden CG, Hedley RH (1980) An Atlas of Freshwater Testate Amoebae. Bull Br Mus (Natural History), Oxford University press, 222 pGoogle Scholar
  36. Patterson RT, McKinnon KD, Scott DB, Medioli FS (1985) Arcellaceans (Thecamoebians) in small lakes of New Brunswick and Nova Scotia: modern distribution and Holocene stratigraphic changes. J Foramin Res 15:114–137CrossRefGoogle Scholar
  37. Patterson RT, Barker T, Burbidge SM (1996) Arcellaceans (Thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario Lakes. J Foramin Res 26:172–183CrossRefGoogle Scholar
  38. Payne RJ, Mitchell EAD (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol. doi: 10.1007/s10933-008-9299-y
  39. Reinhardt EG, Little M, Donato S, Findlay D, Krueger A, Clark C, Boyce J (2005) Arcellacean (thecamoebian) evidence of land-use change and eutrophication in Frenchman’s Bay, Pickering, Ontario. Environ Geol 47:729–739CrossRefGoogle Scholar
  40. Ruzicka E (1982) Die subfossilen Testaceen des Krottensees (Salzburg, Österreich). Limnologica 1:231–254Google Scholar
  41. Schönborn W (1973) Paläolimnologische Studien an testaceen aus Bohrkernen des Latnjajaure (Abisko-Gebiet; Schwedisch-Lappland). Hydrobiologia 42:63–75Google Scholar
  42. Schönborn W (1984) Studies on remains of Testacea in cores of the Great Woryty Lake (N.E.Poland). Limnologica 16:185–190Google Scholar
  43. Scott DB, Medioli FS (1983) Agglutinated Rhizopods in Lake Erie: modern distribution and stratigraphic implications. J Paleontology 57:809–820Google Scholar
  44. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL <>
  45. Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 645–666Google Scholar
  46. Torigai K, Schröder-Adams CJ, Burbidge SM (2000) A variable lacustrine environment in Lake Winnipeg, Manitoba: Evidence from modern thecamoebian distribution. J Paleolimnol 23:305–318CrossRefGoogle Scholar
  47. Utermöhl H (1958) Zur Vervollkommnung der quantativen Phytoplankton-Methodik. Mitt int Ver theor angew Limnol 9:1–38Google Scholar
  48. Warner BG (ed) (1990) Methods in quaternary ecology. Geosci Can Reprint Series 5, 170 pGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. A. J. Wall
    • 1
  • D. Gilbert
    • 1
  • M. Magny
    • 1
  • E. A. D. Mitchell
    • 2
    • 3
    • 4
  1. 1.Laboratoire Chrono-Environnement, CNRS/UFC UMR 6249UFR Sciences et TechniquesBesançon CedexFrance
  2. 2.Ecosystem Boundaries Research Unit, Wetlands Research GroupWSL Swiss Federal Research InstituteLausanneSwitzerland
  3. 3.Laboratory of Ecological SystemsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Laboratory of Soil Biology, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations