Journal of Paleolimnology

, Volume 46, Issue 3, pp 423–452 | Cite as

Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age

  • Mario MorellónEmail author
  • Blas Valero-Garcés
  • Penélope González-Sampériz
  • Teresa Vegas-Vilarrúbia
  • Esther Rubio
  • Maria Rieradevall
  • Antonio Delgado-Huertas
  • Pilar Mata
  • Óscar Romero
  • Daniel R. Engstrom
  • Manuel López-Vicente
  • Ana Navas
  • Jesús Soto
Original Paper


A multi-proxy study of short sediment cores recovered in small, karstic Lake Estanya (42°02′ N, 0°32′ E, 670 m.a.s.l.) in the Pre-Pyrenean Ranges (NE Spain) provides a detailed record of the complex environmental, hydrological and anthropogenic interactions occurring in the area since medieval times. The integration of sedimentary facies, elemental and isotopic geochemistry, and biological proxies (diatoms, chironomids and pollen), together with a robust chronological control, provided by AMS radiocarbon dating and 210Pb and 137Cs radiometric techniques, enabled precise reconstruction of the main phases of environmental change, associated with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the industrial era. Shallow lake levels and saline conditions with poor development of littoral environments prevailed during medieval times (1150–1300 AD). Generally higher water levels and more dilute waters occurred during the LIA (1300–1850 AD), although this period shows a complex internal paleohydrological structure and is contemporaneous with a gradual increase of farming activity. Maximum lake levels and flooding of the current littoral shelf occurred during the nineteenth century, coinciding with the maximum expansion of agriculture in the area and prior to the last cold phase of the LIA. Finally, declining lake levels during the twentieth century, coinciding with a decrease in human pressure, are associated with warmer climate conditions. A strong link with solar irradiance is suggested by the coherence between periods of more positive water balance and phases of reduced solar activity. Changes in winter precipitation and dominance of NAO negative phases would be responsible for wet LIA conditions in western Mediterranean regions. The main environmental stages recorded in Lake Estanya are consistent with Western Mediterranean continental records, and show similarities with both Central and NE Iberian reconstructions, reflecting a strong climatic control of the hydrological and anthropogenic changes during the last 800 years.


Lake Estanya Iberian Peninsula Western Mediterranean Medieval Warm Period Little Ice Age Twentieth century Human impact 



This research was funded through the projects LIMNOCAL (CGL2006-13327-C04-01), PALEODIVERSITAS (CGL2006-02956/BOS), GRACCIE (CSD2007-00067) supported by the Spanish Inter-Ministry Commission of Science and Technology (CICYT); and PM073/2007 provided by the Diputación General de Aragón. The Aragonese Regional Government and CAJA INMACULADA provided two travel grants for the analyses carried out at Univ. of Cádiz and EEZ-CSIC (Spain), and MARUM Centre (Univ. of Bremen, Germany). M. Morellón was supported by a PhD contract with the CONAI + D (Aragonese Scientific Council for Research and Development). We are indebted to Anders Noren, Doug Schnurrenberger and Mark Shapley (LRC-University of Minnesota) for the 2004 coring campaign and Santiago Giralt and Armand Hernández (IJA-CSIC), as well as Alberto Sáez and J.J. Pueyo-Mur (University of Barcelona) for coring assistance in 2006. We also acknowledge Cristina Pérez Bielsa (IGME) for her help in water and short-core sampling, Joan Gomà and Roger Flower for their help with the identification of diatom species, and Marco Klann (MARUM Centre, Univ. of Bremen) for biogenic silica analyses. We are also grateful to EEZ-CSIC, EEAD-CSIC and IPE-CSIC laboratory staff for their collaboration in this research. We thank Dirk Verschuren and Santiago Giralt for their helpful comments and their criticism, which led to a considerable improvement of the manuscript.


  1. Aboal M, Álvarez-Cobelas M, Cambra J, Ector L (2003) Floristic list of the non marine diatoms (Bacillariophyceae) of Iberian Peninsula, Balearic Islands and Canary Islands. A.R.G. Witkowski A., Gantner Verlag K.G., FL 9491, RuggellGoogle Scholar
  2. Abrantes F, Gil I, Lopes C, Castro M (2005) Quantitative diatom analyses: a faster cleaning procedure. Deep Sea Res 52:189–198. doi: 10.1016/j.dsr.2004.05.012 Google Scholar
  3. Álvarez Cobelas M, Cirujano S (2007) Ecología acuática y sociedad de las Lagunas de Ruidera. Consejo Superior de Investigaciones Científicas (C.S.I.C.), Madrid, Spain, 414 ppGoogle Scholar
  4. Álvarez MC, Flores JA, Sierro FJ, Diz P, Francès G, Pelejero C, Grimalt JO (2005) Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeogr Palaeoclimatol Palaeoecol 218:1–13. doi: 10.1016/j.palaeo.2004.12.002 Google Scholar
  5. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203Google Scholar
  6. Ávila A, Burrel JL, Domingo A, Fernández E, Godall J, Llopart JM (1984) Limnología del Lago Grande de Estanya (Huesca). Oecol Aquat 7:3–24Google Scholar
  7. Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14. doi: 10.1016/j.epsl.2006.06.016 Google Scholar
  8. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B Chem Phys Meterol 52:985–992. doi: 10.1034/j.1600-0889.2000.d01-7.x Google Scholar
  9. Barriendos M, Llasat MC (2003) The case of the `Maldá’ anomaly in the Western Mediterranean Basin (AD 1760–1800): an example of a strong climatic variability. Clim Change V61:191–216. doi: 10.1023/A:1026327613698 Google Scholar
  10. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  11. Battarbee RW, Jones V, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, DordrechtGoogle Scholar
  12. Benito G, Díez-Herrero A, Fernández de Villalta M (2003a) Magnitude and frequency of flooding in the Tagus Basin (Central Spain) over the last millennium. Clim Change 58:171–192. doi: 10.1023/A:1023417102053 Google Scholar
  13. Benito G, Sopeña A, Sánchez-Moya Y, Machado MJ, Pérez-González A (2003b) Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene. Quat Sci Rev 22:1737–1756. doi: 10.1016/S0277-3791(03)00133-1 Google Scholar
  14. Bennet K (2002) Documentation for Psimpoll 4.10 and Pscomb 1.03. C programs for plotting pollen diagrams and analysing pollen data. University of Cambridge, CambridgeGoogle Scholar
  15. Björck S, Rittenour T, Rosén P, França Z, Möller P, Snowball I, Wastegard S, Bennikee O, Kromer B (2006) A Holocene lacustrine record in the central North Atlantic: proxies for volcanic activity, short-term NAO mode variability, and long-term precipitation changes. Quat Sci Rev 25:9–32. doi: 10.1016/j.quascirev.2005.08.008 Google Scholar
  16. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffman S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136. doi: 10.1126/science.1065680 Google Scholar
  17. Bradley RS, Hughes MK, Diaz HF (2003) Climate change: climate in medieval time. Science 302:404–405. doi: 10.1126/science.1090372 Google Scholar
  18. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi: 10.1023/A:1008078222806 Google Scholar
  19. Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267. doi: 10.1046/j.1365-2427.2001.00652.x Google Scholar
  20. Brodersen KP, Pedersen OLE, Walker IANR, Jensen MT (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshw Biol 53:593–602. doi: 10.1111/j.1365-2427.2007.01922.x Google Scholar
  21. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic Chironomidae larvae in palaeoecology. ORA technical guide no. 10. Quaternary Research Association Technical Guide, 276 ppGoogle Scholar
  22. Chung FH (1974a) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J Appl Crystallogr 7:519–525Google Scholar
  23. Chung FH (1974b) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7:526–531Google Scholar
  24. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York, p 500Google Scholar
  25. Cohn M, Urey HC (1938) Oxygen exchange reactions of organic compounds and water. J Am Chem Soc 60:679–687. doi: 10.1021/ja01270a052 Google Scholar
  26. Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW, Williams DF (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769–771. doi: 10.1038/378769a0 Google Scholar
  27. Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5:703–723. doi: 10.2307/1941979 Google Scholar
  28. Creus Novau J, Fernández Cancio A, Manrique Menéndez E (1996) Evolución de la temperatura y la precipitación anuales desde el año 1400 en el sector central de la Depresión del Ebro. Luc Mall 8:9–27Google Scholar
  29. Crowley TJ, Lowery TS (2000) How warm was the Medieval Warm Period? Ambio 29:51–54Google Scholar
  30. Davis BAS (1994) Paleolimnology and Holocene environmental change from endorheic lakes in the Ebro Basin, north-east Spain. University of Newcastle upon Tyne, p 317Google Scholar
  31. De Master DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 32:1128–1140Google Scholar
  32. Denton GH, Broecker WS (2008) Wobbly ocean conveyor circulation during the Holocene? Quat Sci Rev 27:1939–1950. doi: 10.1016/j.quascirev.2008.08.008 Google Scholar
  33. Desprat S, Sánchez Goñi MF, Loutre M-F (2003) Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth Planet Sci Lett 213:63–78. doi: 10.1016/S0012-821X(03)00292-9 Google Scholar
  34. Domínguez-Castro F, Santisteban JI, Mediavilla R, Dean WE, López-Pamo E, Gil-García MJ, Ruiz-Zapata MB (2006) Environmental and geochemical record of human-induced changes in C storage during the last millennium in a temperate wetland (Las Tablas de Daimiel National Park, central Spain). Tellus B Chem Phys Meterol 58:573–585. doi: 10.1111/j.1600-0889.2006.00211.x Google Scholar
  35. Dupré M (1992) Palinología. Sociedad Española de Geomorfología, 30 ppGoogle Scholar
  36. Engstrom DR, Schottler SP, Leavitt PR, Havens KE (2006) A reevaluation of the cultural eutrophication of lake Okeechobee using multiproxy sediment records. Ecol Appl 16:1194–1206. doi: 10.1890/1051-0761(2006)016[1194:AROTCE]2.0.CO;2 Google Scholar
  37. Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224. doi: 10.1016/0016-7037(53)90051-9 Google Scholar
  38. Esteban-Amat E (2003) La humanización de las altas cuencas de la Garona y las Nogueras (4500 AC–1955 DC). Ministerio de Medio Ambiente, Secretaría General de Medio Ambiente, Organismo Autónomo de Parques Nacionales, MadridGoogle Scholar
  39. Ferrio JP, Alonso N, López JB, Araus JL, Voltas J (2006) Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Glob Change Biol 12:1253–1266. doi: 10.1111/j.1365-2486.2006.01170.x Google Scholar
  40. Fillat F, García-González R, Gómez D, Reiné R (2008) Pastos del Pirineo. Consejo Superior de Investigaciones Científicas (C.S.I.C.), Madrid, Spain, 319 ppGoogle Scholar
  41. Fischer H, Werner M, Wagenbach D, Schwager M, Thorsteinnson T, Wilhelms F, Kipfstuhl J, Sommer S (1998) Little Ice Age clearly recorded in northern Greenland ice cores. Geophys Res Lett 25:1749–1752. doi: 10.1029/98GL01177 Google Scholar
  42. Flower RJ (1993) Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269–270:473–484. doi: 10.1007/BF00028045 Google Scholar
  43. Gil García M, Ruiz Zapata M, Santisteban J, Mediavilla R, López-Pamo E, Dabrio C (2007) Late holocene environments in Las Tablas de Daimiel (south central Iberian peninsula, Spain). Veg Hist Archaeobot 16:241–250. doi: 10.1007/s00334-006-0047-9 Google Scholar
  44. Giralt S, Moreno A, Bao R, Sáez A, Prego R, Valero-Garcés B, Pueyo J, González-Sampériz P, Taberner C (2008) A statistical approach to disentangle environmental forcings in a lacustrine record: the Lago Chungará case (Chilean Altiplano). J Paleolimnol 40:195–215. doi: 10.1007/s10933-007-9151-9 Google Scholar
  45. Griffiths SJ, Street-Perrott FA, Holmes JA, Leng MJ, Tzedakis C (2002) Chemical and isotopic composition of modern water bodies in the Lake Kopais Basin, central Greece: analogues for the interpretation of the lacustrine sedimentary sequence. Sediment Geol 148:79–103. doi: 10.1016/S0037-0738(01)00211-1 Google Scholar
  46. Guilaine J (1991) Pour une archéologie agraire. Armand Colin, ParisGoogle Scholar
  47. IGME (1982) Mapa Geológico de España 1:50000 No. 289. Benabarre. Instituto Geológico y Minero de España, MadridGoogle Scholar
  48. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Climate Change 2007: the physical science basis. Intergovernmental Panel on Climate Change, CambridgeGoogle Scholar
  49. Johnson TC, Barry SL, Chan Y, Wilkinson P (2001) Decadal record of climate variability spanning the past 700 year in the Southern Tropics of East Africa. Geology 29:83–86. doi: 10.1130/0091-7613(2001)029≤0083:DROCVS≥2.0.CO;2 Google Scholar
  50. Jordán de Asso y del Río I (1798) Historia de la Economía Política de Aragón ZaragozaGoogle Scholar
  51. Julià R, Burjachs F, Dasí MJ, Mezquita F, Miracle MR, Roca JR, Seret G, Vicente E (1998) Meromixis origin and recent trophic evolution in the Spanish mountain lake La Cruz. Aquat Sci 60:279–299. doi: 10.1007/s000270050042 Google Scholar
  52. Kirov B, Georgieva K (2002) Long-term variations and interrelations of ENSO, NAO and solar activity. Phys Chem Earth 27:441–448Google Scholar
  53. Krammer K (2002) Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. A.R.G. Gantner Verlag K.G, Ruggell, p 584Google Scholar
  54. Krammer K, Lange-Bertalot H (1986) Süsswasserßora von Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart, p 876Google Scholar
  55. Lacarra JM (1972) Aragón en el pasado. Austral, MadridGoogle Scholar
  56. Lange-Bertalot H (2001) Diatoms of the Europe inland waters and comparable habitats. A.R.G. Gantner Verlag K.G., Ruggell, p 526Google Scholar
  57. Last WM, Smol JP (2001) Tracking environmental change using lake sediments. Kluwer Academic Publishers, NorwellGoogle Scholar
  58. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831. doi: 10.1016/j.quascirev.2003.06.012 Google Scholar
  59. León-Llamazares A (1991) Caracterización agroclimática de la provincia de Huesca Ministerio de Agricultura, Pesca y Alimentación (M.A.P.A.), MadridGoogle Scholar
  60. López-Vicente M, Navas A, Machín J (2008) Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrol Earth Syst Sci 12:523–535Google Scholar
  61. López-Vicente M, Navas A, Machín J (2009) Geomorphic mapping in endorheic catchments in the Spanish Pyrenees: an integrated GIS analysis of karstic features. Geomorphology. doi: 10.1016/j.geomorph.2008.03.014
  62. Luque JA, Julià R (2002) Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sediment Geol 148:343–355. doi: 10.1016/S0037-0738(01)00225-1 Google Scholar
  63. Luque JA, Julià R, Riera S, Marqués MA, López-Sáez JA, Mezquita F (2004) Respuesta sedimentológica a los cambios ambientales de épocas históricas en el sur de la Península Ibérica: La secuencia de la Laguna Grande de Archidona (Málaga). Geotemas 6:113–116Google Scholar
  64. Luterbacher J, Xoplaki E, Casty C, Wanner H, Pauling A, Küttel M, Rutishauser T, Brönnimann S, Fischer E, Fleitmann D, González-Rouco FJ, García-Herrera R, Barriendos M, Rodrigo F, Gonzalez-Hidalgo JC, Saz MA, Gimeno L, Ribera P, Brunet M, Paeth H, Rimbu N, Felis T, Jacobeit J, Dünkeloh A, Zorita E, Guiot J, Türkes M, Alcoforado MJ, Trigo R, Wheeler D, Tett S, Mann ME, Touchan R, Shindell DT, Silenzi S, Montagna P, Camuffo D, Mariotti A, Nanni T, Brunetti M, Maugeri M, De Zerefos C, Zolt S, Lionello P (2005) Mediterranean climate variability over the last centuries: a review. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) The Mediterranean climate: an overview of the main characteristics and issues. Elsevier, Amsterdam, pp 27–148Google Scholar
  65. Magny M, Gauthier E, Vanniere B, Peyron O (2008) Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. Holocene 18:255–265. doi: 10.1177/0959683607086763 Google Scholar
  66. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30. doi: 10.1029/2003GL017814
  67. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762. doi: 10.1029/1999GL900070 Google Scholar
  68. Martínez-Cortizas A, Pontevedra-Pombal X, García-Rodeja E, Nóvoa Muñoz JC, Shotyk W (1999) Mercury in a Spanish Peat Bog: archive of climate change and atmospheric metal deposition. Science 284:939–942. doi: 10.1126/science.284.5416.939 Google Scholar
  69. Martín-Puertas C, Valero-Garcés BL, Mata MP, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Cordoba. Holocene 18:907–921. doi: 10.1177/0959683608093533 Google Scholar
  70. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857. doi: 10.1063/1.1747785 Google Scholar
  71. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi: 10.1023/A:1008073732192 Google Scholar
  72. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi: 10.1038/nature03265 Google Scholar
  73. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  74. Morellón M, Valero-Garcés B, Moreno A, González-Sampériz P, Mata P, Romero O, Maestro M, Navas A (2008) Holocene palaeohydrology and climate variability in Northeastern Spain: the sedimentary record of Lake Estanya (Pre-Pyrenean range). Quat Int 181:15–31. doi: 10.1016/j.quaint.2007.02.021 Google Scholar
  75. Morellón M, Valero-Garcés BL, Anselmetti F, Ariztegui D, Schnellmann M, Moreno A, Mata P, Rico M, Corella JP (2009) Late Quaternary deposition and facies model for karstic Lake Estanya (NE Spain). Sedimentology. doi: 10.1111/j.1365-3091.2008.01044.x
  76. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40:943–961. doi: 10.1007/s10933-008-9209-3 Google Scholar
  77. Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res Part I Oceanogr Res Pap 40:425–444. doi: 10.1016/0967-0637(93)90140-X Google Scholar
  78. Muller J, Kylander M, Martínez-Cortizas A, Wüst RAJ, Weiss D, Blake K, Coles B, García-Sanchez R (2008) The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Cosmochim Acta 72:449–463. doi: 10.1016/j.gca.2007.09.028 Google Scholar
  79. Ojala AEK, Alenius T (2005) 10 000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Palaeogeogr Palaeoclimatol Palaeoecol 219:285–302. doi: 10.1016/j.palaeo.2005.01.002 Google Scholar
  80. Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311:841–844. doi: 10.1126/science.1120514 Google Scholar
  81. Peinado Lorca M, Rivas-Martínez S (1987) La vegetación de España, 544 ppGoogle Scholar
  82. Prat N, Rieradevall M (1995) Life cycle and production of Chironomidae (Diptera) from Lake Banyoles (NE Spain). Freshw Biol 33:511–524. doi: 10.1111/j.1365-2427.1995.tb00410.x Google Scholar
  83. Prat N, Real M, Rieradevall M (1992) Benthos of Spanish lakes and reservoirs. Limnetica 8:221–230Google Scholar
  84. Proctor CJ, Baker A, Barnes WL (2002) A three thousand year record of North Atlantic climate. Clim Dyn 19:449–454. doi: 10.1007/s00382-002-0236-x Google Scholar
  85. Real M, Rieradevall M, Prat N (2000) Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshw Biol 43:1–18. doi: 10.1046/j.1365-2427.2000.00508.x Google Scholar
  86. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46:1029–1058Google Scholar
  87. Richter TO, Van der Gaast SJ, Koster B, Vaars AJ, Gieles R, De Stigter HC, De Haas H, Van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis. The Geological Society of London, London, pp 39–50Google Scholar
  88. Riera S, Wansard R, Julià R (2004) 2000-year environmental history of a karstic lake in the Mediterranean Pre-Pyrenees: the Estanya Lakes (Spain). Catena 55:293–324. doi: 10.1016/S0341-8162(03)00107-3 Google Scholar
  89. Riera S, López-Sáez JA, Julià R (2006) Lake responses to historical land use changes in northern Spain: the contribution of non-pollen palynomorphs in a multiproxy study. Rev Palaeobot Palynol 141:127–137. doi: 10.1016/j.revpalbo.2006.03.014 Google Scholar
  90. Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. J Paleolimnol 25:81–99. doi: 10.1023/A:1008185517959 Google Scholar
  91. Risberg J, Alm G, Goslar T (2005) Variable isostatic uplift patterns during the Holocene in southeast Sweden, based on high-resolution AMS radiocarbon datings of lake isolations. Holocene 15:847–857. doi: 10.1191/0959683605hl858ra Google Scholar
  92. Rivas-Martínez S (1982) Étages bioclimatiques, secteurs chorologiques et séries de végetation de l’Espagne méditerranéenne. Ecol Medit VIII:275–288Google Scholar
  93. Romero-Viana L, Julià R, Camacho A, Vicente E, Miracle M (2008) Climate signal in varve thickness: Lake La Cruz (Spain), a case study. J Paleolimnol 40:703–714. doi: 10.1007/s10933-008-9194-6 Google Scholar
  94. Ruas M-P (1990) Analyse des paléo-semences carbonisées. In: Raynaud C (ed) Le village gallo-romain et médiéval de Lunel-Viel (Hérault) La fouille du quartier ouest (1981–1983). Centre de Recherches d’Histoire Ancienne, pp 96–104Google Scholar
  95. Saether OA (1979) Chironomid communities as water quality indicators. Ecography 2:65–74. doi: 10.1111/j.1600-0587.1979.tb00683.x Google Scholar
  96. Salrach JM (1995) La formació de la societat feudal. Ss. VI–XII. Història, Política, Societat i Cultura dels Països Catalans. Grup Enciclopèdia Catalana, BarcelonaGoogle Scholar
  97. Sancho-Marcén C (1988) El Polje de Saganta (Sierras Exteriores pirenaicas, prov. de Huesca). Cuat Geomorf 2:107–113Google Scholar
  98. Saros JE, Fritz SC, Smith AJ (2000) Shifts in mid- to late-Holocene anion composition in Elk Lake (Grant County, Minnesota): comparison of diatom and ostracode inferences. Quat Int 67:37–46. doi: 10.1016/S1040-6182(00)00007-0 Google Scholar
  99. Saz Sánchez MA (2003) Temperaturas y precipitaciones en la mitad norte de España desde el siglo XV. Estudio Dendroclimático. Publicaciones del Consejo de la Naturaleza de Aragón, ZaragozaGoogle Scholar
  100. Schmid PE (1993) A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and Orthocladiinae. Wasser Abwasser Supplement 3:1–514Google Scholar
  101. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154. doi: 10.1023/A:1023270324800 Google Scholar
  102. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for Medieval hydroclimate. Quat Sci Rev 26:2322–2336. doi: 10.1016/j.quascirev.2007.04.020 Google Scholar
  103. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder minimum. Science 294:2149–2152. doi: 10.1126/science.1064363 Google Scholar
  104. Smol J (1995) Paleolimnological aproaches to the evaluation and monitoring of ecosystem health: providing a history for environmental damage and recovery. In: Rapport D, Gaudet L, Calow P (eds) Evaluating and monitoring the health of large-scale ecosystems. Springer-Verlag, Berlin, pp 301–318Google Scholar
  105. Sousa A, García-Murillo P (2003) Changes in the Wetlands of Andalusia (Doñana Natural Park, SW Spain) at the end of the Little Ice Age. Clim Change 58:193–217. doi: 10.1023/A:1023421202961 Google Scholar
  106. Stockmarr J (1971) Tables with spores used in absolute pollen analysis. Pollen Spores 13:614–621Google Scholar
  107. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol Isotope Geosci Sect 80:261–279Google Scholar
  108. Taricco C, Ghil M, Vivaldo G (2008) Two millennia of climate variability in the Central Mediterranean. Clim Past Discuss 4:1089–1113Google Scholar
  109. Tiljander M, Saarnisto M, Ojala AEK, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajarvi, central Finland. Boreas 32:566–577. doi: 10.1080/03009480310004152 Google Scholar
  110. Trachsel M, Eggenberger U, Grosjean M, Blass A, Sturm M (2008) Mineralogy-based quantitative precipitation, temperature reconstructions from annually laminated lake sediments (Swiss Alps) since AD 1580. Geophys Res Lett 35:L13707. doi: 10.1029/2008GL034121 Google Scholar
  111. Ubieto A (1989) Historia de Aragón. Anubar, ZaragozaGoogle Scholar
  112. Valero Garcés BL, Moreno A, Navas A, Mata P, Machín J, Delgado Huertas A, González Sampériz P, Schwalb A, Morellón M, Cheng H, Edwards RL (2008) The Taravilla lake and tufa deposits (Central Iberian Range, Spain) as palaeohydrological and palaeoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 259:136–156. doi: 10.1016/j.palaeo.2007.10.004 Google Scholar
  113. Valero-Garcés B, Navas A, Machín J, Stevenson T, Davis B (2000) Responses of a Saline Lake ecosystem in a semiarid region to irrigation and climate variability: the history of Salada Chiprana, Central Ebro Basin, Spain. Ambio 29:344–350Google Scholar
  114. Valero-Garcés B, González-Sampériz P, Navas A, Machín J, Mata P, Delgado-Huertas A, Bao R, Moreno A, Carrión JS, Schwalb A, González-Barrios A (2006) Human impact since medieval times and recent ecological restoration in a Mediterranean lake: the Laguna Zoñar, southern Spain. J Paleolimnol 35:441–465. doi: 10.1007/s10933-005-1995-2 Google Scholar
  115. Verschuren D, Tibby J, Sabbe K, Roberts N (2000) Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81:164–182Google Scholar
  116. Vila-Escalé M, Vegas-Vilarrúbia T, Prat N (2007) Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire. Water Res 41:2171–2179. doi: 10.1016/j.watres.2006.07.029 Google Scholar
  117. Villa I, Gracia ML (2004) Estudio hidrogeológico del sinclinal de Estopiñán (Huesca). Confederación Hidrográfica del Ebro, ZaragozaGoogle Scholar
  118. Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as quantitative indicators of past climatic change. Can J Fish Aquat Sci 48:975–987Google Scholar
  119. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late holocene climate change: an overview. Quat Sci Rev 27:1791–1828. doi: 10.1016/j.quascirev.2008.06.013 Google Scholar
  120. Weninger B, Jöris O (2004) Glacial radiocarbon calibration. The CalPal program. In: Higham T, Ramsey CB, Owen C (eds) Radiocarbon and archaeology fourth international symposium, Oxford 2002Google Scholar
  121. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Entomol Scand Suppl 19:1–457Google Scholar
  122. Witak M, Jankowska D (2005) The Vistula Lagoon evolution based on diatom records. Baltica 18:68–76Google Scholar
  123. Witkowski A, Lange-Betarlot H, Metzeltin D (2000) Diatom flora of marine coasts. In: Lange-Bertalot H (ed) Iconographia diatomologica, p 925Google Scholar
  124. Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7. doi: 10.1023/A:1008129509322 Google Scholar
  125. Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat Sci 57:360–386. doi: 10.1007/BF00878399 Google Scholar
  126. Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007. doi: 10.1016/S0016-7037(99)00091-5 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mario Morellón
    • 1
    Email author
  • Blas Valero-Garcés
    • 1
  • Penélope González-Sampériz
    • 1
  • Teresa Vegas-Vilarrúbia
    • 2
  • Esther Rubio
    • 2
  • Maria Rieradevall
    • 2
  • Antonio Delgado-Huertas
    • 3
  • Pilar Mata
    • 4
  • Óscar Romero
    • 5
  • Daniel R. Engstrom
    • 6
  • Manuel López-Vicente
    • 7
  • Ana Navas
    • 7
  • Jesús Soto
    • 8
  1. 1.Departamento de Procesos Geoambientales y Cambio GlobalInstituto Pirenaico de Ecología (IPE)—CSICZaragozaSpain
  2. 2.Departament d’Ecologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Estación Experimental del Zaidín (EEZ)—CSICGranadaSpain
  4. 4.Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto Real (Cádiz)Spain
  5. 5.Facultad de Ciencias, Instituto Andaluz de Ciencias de la Tierra (IACT)—CSICUniversidad de GranadaGranadaSpain
  6. 6.St. Croix Watershed Research StationScience Museum of MinnesotaMarine on St. CroixUSA
  7. 7.Departamento de Suelo y AguaEstación Experimental de Aula Dei (EEAD)—CSICZaragozaSpain
  8. 8.Departamento de Ciencias Médicas y Quirúrgicas, Facultad de MedicinaUniversidad de Cantabria Avda. Herrera Oria s/nSantanderSpain

Personalised recommendations